Table of Contents

sin lient++ from nagios 1
ChOOSING & ITANSPOLE .. .eveeteeuteeuteeuteeiteeiteetteeute et e eateettesuteeateshtesutesutesueesbeesbeeshtesbeesaeesbeesbeesbeesbeesaeesbeenseenns 1
INSCHENE (CHECK TIE).uuvvvviiiieiiiiieieee ettt e ettt e e e e e ee ettt e e e e e e eeataaeeeesseesssaseeeeessessnsaeseeessssnssesreesessannnenes 1
NRPE (CHECK TIIPE). +veevteeiieenitieniee ettt ettt et sttt e st e st e et e bt esbteenbteesabeesabeesabeesabeesabeeenbeeenanes 2
NRPE aNd NSCHENE SEIVET. . .uvvvvviiiiiieiieieieeeeeeeeeeeee e e eetatte e e e e e eeetaae e e e e e eesaaaeeeesesessasaseeeessssssrereesessansrnnes 2
INSCA (N1SCA-SCIVEI) .ceeeeeeeeeeeeeeeeieteeeiesstasassssssasererereseeeeeererererereeterttateeeeaeaeeeaeeeeeeeeeeeeesesesssesesssessssssssssssses 3
Y Y o €010 o O 1074 s RO RN 3

sin lient++ from nagios with check nt 4
1. Nagios COMMANG LI, .. ceueerteetietietieteeite ettt ettt e bt et e bt e bt e bt e bt e sbeesbeesbee bt e bt e bt esbeesbeeebeenbeennes 4
2. NSClient++ CONTIGUIALION. «...eeveeteeteeteeteerte et et et et erteesbeesbe e bt enbeenbeesbeesbeesbeenbeesbeesbeesbeesbeesseenseanses 5
3. SOIVING PLODIEINS. -+ uveeuteeuteeuteeie ettt ettt et e bt e bt e bt e bt et e e bt e bt e bt e bt e bt e beesbeesbeenbeenbeenbeesbeesbeesbeenseanss 6
4. NagioS CONTIGUIATION . euveeuteeuieriteeite ettt ettt ettt et e et e et e eateeatesateeabeeateeueeeatesaeesatesabeeuteemeesaeesanesnbenas 8
T 00 F21 IR0 (e KT RSSOt 9

sin lient++ from nagios with check nrpe 10
1. OVErview Of NRPE. ...ttt ettt e et e e e e e ettt e e e e e e sesaaaeeeeeesssssaareeeessennenes 10
2. Nagios COMMANG L. .. cuveeueeeuiieieeie ettt ettt ettt ettt et e et e et e eaee et e eateeaeeeabeembeemeeeneesateeaeeeas 11
3. NSClient++ COMTIGUIALION.eeuveeuteeteeieete et et et ete et et eteeaeeeateeabeeabeeaeeeatesatesaeeembesabeemeeeaeesneesaneeas 11
4. Finding and SOIVING PIODIGIIIS . ..cevteuieuietiertiesitertteette et e stte sttt e st e st et e bt e bt e bt e beesbeesbeebeebeebeeneean 12
5. NSClient++ configuration (FEVISIEEA)......eoveeveeteeiieiieieesie ettt ettt ettt te bbb ebeeeeas 14

5.1 NRPE specific setting in INSCIIEMEA .. ceveeveeeeeieerieeieeieeieeieeteeteebeebeeeeeseeesteesseenbeeseeneeas 14
I (o e 101 (= ORI 15
6. Nagios command line (FEVISTEEA)veeuveeeereiriiiieeie ettt ettt ettt ettt e eeeeaeeea 15
7. NAIOS CONMTIGUIALIONveeuteeuieeuieeteete et et et et et e bt ete e bt e bt e bt ebe e beebeeabeenbeenbeenbeenteenbeenbeenbeenseensean 17
7 U 1015 (0 Yo L1 o35 (o) 1 RS RRRRRROY 17
T2 TOIMPIALEe ettt ettt ettt ettt ettt et e et et e bt eate et e eabeen b e e bt e bt ebe e be e be e beenbeentean 18
AR T & (0T A (575117 1 1) o NPT 18
7.4 Service defiNItIONS ..cuvvveeeeeiieetieiieeeee ettt e e e e e eete e e e e e eeeataeeeeeseeeaaaeeeeeesesssbaeeeeeesssnsaaneeeessennnnnes 18
8. WHETE £0 GO MEXE-+euvteueeruteruieeuieeuieeuteeiteetteetteeuteeateestesheesutesatesubeeabeabeesbeeshtesheesubesueeeaeesbeesbeesaeesaeesneens 19

sin lient++ from nagios with A 20
1. OVEIVIEW OF NSCA ..ottt e e e e e et e e e e eeeaaaeeeeeseesaateeeeeesssnnsaareeeessennenes 20
2. NSClient++ COMTIGUIALION. ¢...eeutieuteeteeieeteete et et et et et eteeatesateeateeabeeaeeeaeeeatesaeesabeeabesaeeeneesatesaeeens 20

2 LY oY L [T TR 21
2.2 NSCA CONTIGUIALIONeuteruteeiieeiieeete ettt ettt et et et eateeateeabeeabeeateestesaeesatesateeubeeaeeeneesnsesnneeas 21
R A N OF N O] 1111 4721 4 16 TR 23
3 NS C A SOV ettt e e e e eeseaasssssssssssssssssssssessssrsrsssrssnenerens 23
4. Testing and DEeDUGGINEGceoueiiuieiieiieeiee ettt st et e bt e bt e bt e bt e bt e s bt e be e beebeebeeneean 23
5. CONFIGUIE INAZIOS .- e euveeuteeuteeie ettt ettt ettt et e et e bt e bt e bt e bt eabe e be e beeabeenbeenbeenbeenteenbeenbeenbeenbeensean 25
oI I 015 (0 Ta L0 o35 (o) 1 RS RRRRRRY 25
I S A SK O 11T TR RRRRRY 26
5.3 TOIMIPIALE ...ttt ettt ettt ettt ettt et et et e bt et e e bt e bt e bt e bt e bt et e e be e be e beenbeentean 27
I & (T A (57511 LT o NSRS 27
5.5 Service defiNItIONS .couuvveeeeiiieeiieiieeeeeeetee e ee e e eeee e e e e e eeeat e e e e e eeeaaaeeeeeeessabaeeeeeesssnnaaneeseeeennenes 27

6. WHETE 10 GO TIEXE .. e euteeuteeuieeiieeite et et e ittt et ettt et eabeeateeateeaeeeaeeeateeabeeabeeaeeeaeeeateeaeeeabeeabeemeeeaeesnteeaneaas 28

Using NSClient++ from nagios

This is a quick guide over how to use NSClient++ with Nagios. It is divided into four sections (so don't miss
the three other pages but this one).

1. Overview (this page)
2. NSClient (check nt)

3. NRPE (check nrpe)
4. NSCA

Choosing a transport

NSClient++ supports several transports and you can use either one or several of these or you can create your
own cusom transport. Transports are methods which facilitates communication between Nagios and your
server. You can look at this much like for instance HTTP (which you are using now) and FTP. They both
support transferring files but they have slightly different approaches so things work differently but the end
result is the same. A file gets transfered. In our case the end result is that a monitoring result gets submitted to
Nagios.

1. NSClient (check_nt) Only has some basic checks and is intended for backwards compatibility.

2. NRPE (check_nrpe) This is what I would think of as the "normal" or preferred way to use
NSClient++. Most examples are intended to be used in this mode.

3. NRPE (check_nrpe) and NSClient (check_nt) This is what I would think of as the "legacy" way to
use NSClient++ in addition to all advanced features you have support for older legacy checks. (in
other words ability to migrate without to much change).

4. NSCA (nsca server) If you are an "advanced" Nagios user you might want to do passive checking
(which is supported from NSClient++). If you don't know what NSCA is you probably don't want to
do this.

5. Make your own The spirit of NSClient++ is to allow you do decide what you want to do so you can
make any combination of the above and even use some other third party protocols or what not...

I would recommend nagios-beginners to starting out with NSClient++ to go with NSClient (since it is
simplest to setup) and everyone else (NSClient++ beginner but nagios intermediates) go with NRPE (unless

you have specific needs in which case you most likely know enough to choose for you self). And advanced
users feel free pick and choose.

NSClient (check_nt)

Using NSClient++ from nagios

Nagios actively
makes a call to

MSClient++ listens MNSClient++

to port 12489 Firawal

Windows Computer

|
MSCliants+ |

Nagios Server
O

Firewall allows trafic from
nagios on port 12489

This is the simplest and most locked in way to use NSClient++ you are limited to a handful of checks and
there is no way to exploit the power of NSClient++ from here. The good though is that it is very simple to use
and setup and the configuration is included with nagios so it might be a good way to start. It is also the "only"
way to have password protection. But note that since there is no encryption the password is sent as clear text
so if you are compromised it will be easy to find. Another option in favor of this is since check_nt is
distributed in the "normal plugin kit" you undoubtedly already have everything you need on the Nagios side.

For details on configuring this go to the NSClient setup guide.

NRPE (check_nrpe)

Nagios actively
makes a call to

MSClient++ listens MNSClient++

to port 5666 Firawal

Windows Computer

|
MSCliants+ |

Nagios Server

=iy

Firewall allows trafic from
Magios on port 5666

NRPE is the preferred way and, if you ask me, you get the most out of NSClient++ choosing this mode.
NRPE works much like NRPE for unix (if you are familiar with it) and in short you can say it relays a plugin
request to a remote server. NRPE acts like a simple transport layer allowing remote execution. The difference
between regular NRPE and NSClient++ is that NSClient++ has several built-in checks and thus does not
require scripts for basic checks. So with NSClient++ you get a lot of ready-to-use checks that wont require
you to have scripts. But if you choose you can disable all "modules" and stick with a pure NRPE installation
and only external scripts or just use the external script to extend NSClient++ when you need.

For details on configuring this go to the NRPE setup guide.

NRPE and NSClient Server

NSClient (check_nt) 2

Nagios actively
makes a call to

MNSClient++ listens to MWSClient++

port S6ET & 12489

Nagios Server

chack_nrpa
check_nt

Firewall allows trafic from
nagics on port 5666 & 12489

Windows Computer i

NSClient++ is built around choice this you can naturally use both NRPE (check_nrpe) and NSClient
(check_nt) if you wish and this is the preferred way to migrate from old legacy setup to a more modern one.

For details on configuring this go to both the NRPE setup guide and the NSClient setup guide.

NSCA (nsca-server)

NSClient++ repooris
status back to Nagios

Magios passivly acceplis
calls an port 5667

Windows Cnmpl.lnr\ MNagios Server

o [H

Firewall allows trafic To
Magios on port 5667

Passive checking is the "reversed" of active checking this means that instead of Nagios "calling out" to your
(windows) server the (windows) server will phone home to the Nagios server instead. The best way to
illustrate this is to compare the NRPE and the NSCA pictures above.

For details on configuring this go to the NSCA setup guide.

Make Your Own

Magios actively makes a
NSClient++ listens to call to NSClient+ and
port 5667 & 12489 listens passivly at 5667

Nagios Server
chack_nrpa
check_nt

Firewall allows trafic from
nagios on port 9666 & 12489

Windows Computer i

o

Firewall allows trafic to
naghes on port 5667

There are several other monitoring protocols out there and you can quite easily with for instance Lua make
your own how to do this is outside the scope of this guide but you should know that the "sky is the limit".

NRPE and NSClient Server

Using NSClient++ from nagios with check nt

Nagios actively
makes a call to

NSl
MSClient++ listens SClient++

to port 12489 Firewall

Windows Computer

MSCliants+ |

Nagios Server
O

Firewall allows trafic from
nagios on port 12489

NOTICE The check_nt client support is available for compatibility mode and it is not recommended unless
you already have an infrastructure around it. There are several features you will not be able to use with this
scheme. I would recommend using NRPE instead.

This is the simplest and most locked in way to use NSClient++ you are limited to a handful of checks and
there is no way to exploit the power of NSClient++ from here. The good though is that it is very simple to use
and setup so it might be a good way to start. It is also the "only" way to have password protection. But note
that since there is no encryption the password is sent as clear text so if you are compromised it will be easy to
find. Also since check_nt is distributed in the "normal plugin kit" you undoubtedly already have everything
you need on the nagios side.

Nagios have their own guide for setting this up here
http://nagios.sourceforge.net/docs/3 O/monitoring-windows.html

1. Nagios command line

Nagios Server

o e emsal g
Q

Using check_nt from the command line of your Nagios server is usually the bast place to start. If you are not
familiar with it I would recommend you try this out as it will save you a lot of time when you are getting
started or trying out new things. It is a good way to eliminate errors and you wont have to bother with
restarting/waiting on Nagios when you need to make changes. To access NSClient++ from the Nagios server
via the NSClient protocol you use a program (comes with the default plugins) called check_nt.

check_nt -H <client ip> -p <port> -v <command> ...

e client ip = the IP of the server you want to monitor (i.e. where NSClient++ i installed).

Using NSClient++ from nagios with check_nt 4

http://nagios.sourceforge.net/docs/3_0/monitoring-windows.html

e port = the port you are using for the NSClientListener (defaults to 12489)
e command = is the various things you can monitor. The various commands all take different additional
arguments which are all showed in the help.

To check the CPU load you can for instance run the following (assuming your windows server has 10.0.0.1 as
ip address)

check_nt -H 10.0.0.1 -p 12489 -v CPULOAD -w 80 -c 90 -1 5,80,90,10,80,90
CPU Load 0% (5 min average) 0% (10 min average)
['S5 min avg Load'=0%;80;90;0;100 '10 min avg Load'=0%;80;90;0;100

If you instead got the following don't worry, it is because your NSClient++ is not configured properly and, we
will solve that in the next section.

CRITICAL - Socket timeout after 10 seconds

2. NSClient++ configuration

NEClient++ listens
to port 12489

Windows Computer

MSCliants+ |-

Q

The first thing you need to do is decide which modules you want to use. NSClient++ is modular by design this
means you only use the features you want (and if you want you can use all of them). The modules can be
roughly divided into two kinds.

1. check commands
2. protocols (and utility modules).

The first kind is the one you *use* it responds to your commands and "finds" monitored data for you. The
second kind is the one that allows you to talk to the first kind. When it comes to modules for the NSClient
mode you will need the following:

Module Description Commands

CheckSystem.dll Handles many system checks eCtEU’ MEMORY, COUNTER
CheckDisk.dll Handles Disk related checks USEDDISKSPACE
Filel.ogger.dll Logs errors to a file so you can see what is going on [N/A

NSClientListener.dll Ir:;sgﬁ)nss and responds to incoming requests from N/A

To enable modules you edit the [modules] section in the nsc.ini file and your section should look something
like this:

1. Nagios command line 5

[modules]
CheckSystem.dll
CheckDisk.dl1l
FileLogger.dll
NSClientListener.dll

The other things you need to configure is who is allowed to ask questions (which ip addresses) this is done
either under the [Settings] section (globally) or under the [NSClient] (locally). I would recommend using the
[Settings] section as it will simplify things when you start using NRPE. The keys you need to change are
allowed_hosts and password. And the value should be:

¢ allowed_hosts = A list of addresses that is allowed to ask questions (i.e. your nagios ip).
¢ password = The password to use.

The result should look like this (assuming you don't use a password and the nagios ip address is 10.0.0.2):

[Settings]
;password=secret-password
allowed_hosts=10.0.0.2

Notice that since you don't use a password that key is commented out (;).
Don't forget to restart NSClient++ after you make changes to the NSC.ini file.

nsclient++ /stop
nsclient++ /start
... Or ...

net stop nsclientpp
net start nsclientpp

Now feel free to try the command line agent again and hopefully things should work out perfectly. Run the
following command from your nagios server.

check_nt -H 10.0.0.1 -p 12489 -v CPULOAD -w 80 -c 90 -1 5,80,90,10,80,90
CPU Load 0% (5 min average) 0% (10 min average)
['S min avg Load'=0%;80;90;0;100 '10 min avg Load'=0%;80;90;0;100

check_nt -H 10.0.0.1 -p 12489 -v USEDDISKSPACE -d SHOWALL -1 c
c:\ - total: 149.00 Gb - used: 12.93 Gb (9%) - free: 136.07 Gb (91%)
|'c:\ Used Space'=12.93Gb;0.00;0.00;0.00;149.00

3. Solving problems

2. NSClient++ configuration

Nagios actively
makes a call to

MSClient++ listens MNSClient++

fo port 12489 Firewall

Windows Computer

MSCliants+ |

Nagios Server

@

Firewall allows trafic from
nagios on port 12489

A good way to find and solve problems is to run nsclient++ in "test" mode this is done by stopping the service
and starting it in "test" mode.

nsclient++ /stop
nsclient++ /test

test mode ... (quit with: exit)
nsclient++ /start

When in test mode you will get a lot of interesting log messages when things are happening so it is fairly
simple to figure out what is wrong. To try this out do the following:

nsclient++ /stop
nsclient++ /test

What you will see is the following output (or something similar):

Launching test mode - client mode

d NSClient++.cpp(1106) Enabling debug mode...

d NSClient++.cpp(494) Attempting to start NSCLient++ - 0.3.7.7 2009-07-05

d NSClient++.cpp(897) Loading plugin: CheckSystem...

d NSClient++.cpp(897) Loading plugin: NSClient server...

d \PDHCollector.cpp(66) Autodetected w2k or later, using w2k PDH counters.

1 NSClient++.cpp(600) NSCLient++ — 0.3.7.7 2009-07-05 Started!

d \PDHCollector.cpp(103) Using index to retrive counternames

d \Socket.h(675) Bound to: 0.0.0.0:12489

1 NSClient++.cpp(402) Using settings from: INI-file

1 NSClient++.cpp(403) Enter command to inject or exit to terminate...

d \PDHCollector.cpp(123) Found countername: CPU: \Processor (_total)\% processortid
d \PDHCollector.cpp(1l24) Found countername: UPTIME: \System\Tid sedan systemstart
d \PDHCollector.cpp(125) Found countername: MCL: \Minne\Dedikationsgrdns

d \PDHCollector.cpp(1l26) Found countername: MCB: \Minne\Dedicerade byte

Then when you run the check from Nagios again:

check_nt -H 10.0.0.1 -p 12489 -v USEDDISKSPACE -d SHOWALL -1 c
c:\ — total: 149.00 Gb - used: 12.93 Gb (9%) - free: 136.07 Gb (91%)
|'c:\ Used Space'=12.93Gb;0.00;0.00;0.00;149.00

If you check the log from NSCLient++ you should see (amongst other):

d \NSClientListener.cpp(l146) Data: None&2&5

d \NSClientListener.cpp(171) Data: 5

d NSClient++.cpp(1034) Injecting: checkCPU: 5, nsclient
d NSClient++.cpp(1070) Injected Result: OK '0'

3. Solving problems 7

d NSClient++.cpp(1071) Injected Performance Result: ''
When you are don you can exit NSClient++ using the exit command:
exit
Then don't forget to start NSClient++ again:

nsclient++ /start

4. Nagios configuration

Nagios Server

" el

Q

Nagios comes pre-configured for many of the NSClient checks. in windows.cfg you will find many entries
along the lines of:

define service{

use generic-service
host_name winserver
service_description NSClient++ Version
check_command check_nt!CLIENTVERSION

The interesting part here is: 'check_nt! CLIENTVERSION' which will run a check against check_nt. In
commands.cfg the check_nt command is defined like so:

'check_nt' command definition
define command{
command_name check_nt
command_line SUSER1S$/check_nt —-H SHOSTADDRESSS -p 12489 -v S$SARG1S S$SARG2S

So you can see most things are already setup for you so it is quite simple to get started. The more "advanced"
checks (which takes parameters) looks like this if you recall the CPULOAD we tried from the command line:

define service({

use generic-service

host_name winserver
service_description CPU Load

check_command check_nt!CPULOAD!-1 5,80,90

4. Nagios configuration

the command is now defined as 'check_nt!CPULOAD!-1 5,80,90' which translates directly into:
<plugin dir>/check_nt -H <ip of client> -p 12489 -v CPULOAD -1 5,80,90

which if you recall is exactly what we used when we tried the command from the command line. If you want
to add a password the simplest way is to add it in command.cfg (if you want to have the same password on all
your clients) like so:

'check_nt' command definition
define command{
command_name check_nt
command_line SUSER1S$/check_nt —-H $SHOSTADDRESSS -p 12489 -s <password> —-v S$ARG1S S$SARG

5. Final words

MNagios actively
makes & call to

MSClient++ listens MNSClient++

to port 12489 Firewal

Windows Computer

|
MSCliants+ |

Nagios Server
9

Firewall allows trafic from
nagios on port 12489

As I stated initially using check_nt is limited and many checks (for instance Eventl.og?) wont work this way.
So a good idea is probably to start checking out the NRPE Guide as well.

And remember if you experience problems don't "debug" from nagios, run your command from the
command line while having nsclient++ running in /test mode and you should be fine!

5. Final words 9

Using NSClient++ from nagios with check _nrpe

Nagios actively
makes a call to

MSClient++ listens MNSClient++

to port 5666 Firawall

Windows Computer

|
MSCliants+ |

Nagios Server

=iy

Firewall allows trafic from
Magios on port 5666

NRPE is the preferred way over NSClient (check_nt) and you get the most out of NSClient++ choosing this
mode (NSCA and what not will support the same commands but are more complex to setup). NRPE works
much like NRPE for unix (if you are familiar with it) and in short you can say it relays a plugin request to a
remote server. NRPE acts like a simple transport layer allowing remote execution. The difference between
regular NRPE and NSClient++ is that NSClient++ has built-in checks. So with NSClient++ you get a lot of
ready-to-use checks that wont require you to have scripts. But if you choose you can disable all "modules"
and stick with a pure NRPE installation and only external scripts.

1. Overview of NRPE

For those not familiar with NRPE (Nagios Remote Plugin Execution) here is a quick introduction.

1
Qchack_nrpa -c ChackCPU\

Windows Computer

o

2
@\ CheckCPU
Client++ runs the

command “CheckCPI™
and gets the result {4}

Windows Computer ; Nagios Server

?
NRPE works much like SSH or telnet etc. It relays a command and awaits the result. In the above diagram
what happens is:

OK, CPU is OK

1. Nagios executes check_nrpe with the proper arguments.
2. NSClient++ receives the command to be executed

Using NSClient++ from nagios with check_nrpe

3. NSClient++ will execute the command and get a result on the form of <status>, <message> and
optionally <performance data>

4. NSClient++ sends the result back to Nagios

5. Nagios gets the result from check_nrpe (and uses it much like any other plugin)

So in essence NRPE is merely a transport mechanism to send the result of a check command over the
network.

2. Nagios command line

Nagios actively
makes a call to
MEClient++

Nagios Server

& e @

Q

NRPE require you to install a special plug-in on your nagios server called NRPE. The unix-side of NRPE
consists of a server and a client on nagios you only need the client so you can skip any "servers" or what not
that it want to start when you install it.

The client is (generally) called check_nrpe and works like so:

./check_nrpe -H <nsclient++ server ip> —-c <command> [-a <a> <list> <of> <arguments>]
¢ <command> = The command (script) you want to run (often this is a pre-built command from within
NSClient++)

® <a> <list> <of> <arguments> = a list of arguments for the command.

So the simplest way to see if things are a-working just run it without a command and you should get a
response specifying the version of "NRPE" (in this case NSClient++) like so:

./check_nrpe -H <nsclient++ server ip>
I (0.3.3.19 2008-07-02) seem to be doing fine...

And again like in the NSClient example don't worry if you get a timeout here since we have to configure
NSClient++ before it actually works so this is expected.

3. NSClient++ configuration

1. Overview of NRPE 11

NEClient++ listens
to port 5666

Windows Computer

@ MSCliants+ |- L L

Q

Configuring NRPE is a bit more involved but not overly so. The first thing you need to do to get things
working is add the NRPEListener module.

[modules]

NRPEListener.dll

If you have not already done so (above) you also need to set which computers are allowed to query the agent.
This is set either under the [Settings] section (globally) or under the [NRPE] section (locally). If you when
you configured NSClient above set this globally you are already set to go. If not the key you need to change is
the allowed_hosts. There is no password for NRPE.

e allowed_hosts = A list of addresses that is allowed to ask questions (i.e. your nagios ip).
The result should look like this (assuming your nagios server ip address is 10.0.0.2):

[Settings]
allowed_hosts=10.0.0.2

After this restart the service.

nsclient++ /stop
nsclient++ /start

. or ...
net stop nsclientpp
net start nsclientpp

Now feel free to try the command line agent again and hopefully things should work out perfectly. Run the
following command from your nagios server.

./check_nrpe -H 10.0.0.1
I (0.3.3.19 2008-07-02) seem to be doing fine...

4. Finding and solving problems

3. NSClient++ configuration 12

Nagios actively
makes a call to

NSl
MSClient++ listens SClient++

to port 5666 -

Windows Computer

MSCliants+ |

Nagios Server

=

Firewall allows trafic from
Magios on port 5666

A good way to find and solve problems is to run nsclient++ in "test" mode this is done by stopping the service
and starting it in "test" mode.

nsclient++ /stop
nsclient++ /test

test mode ... (quit with: exit)
nsclient++ /start

When in test mode you will get a lot of interesting log messages when things are happening so it is fairly
simple to figure out what is wrong. So lets try this now: Start NSClient++ in test mode like so:

nsclient++ /stop
nsclient++ /test

And you should see something along the following lines (it will look different depending on your setup):

Launching test mode - client mode

d NSClient++.cpp(1106) Enabling debug mode...

d NSClient++.cpp(494) Attempting to start NSCLient++ - 0.3.7.7 2009-07-05
d NSClient++.cpp(897) Loading plugin: NRPE server (w/ SSL)...

d \NRPEListener.cpp(91) Loading all commands (from NRPE)

d \NRPEListener.cpp(l21) Starting NRPE socket...

1 NSClient++.cpp(600) NSCLient++ - 0.3.7.7 2009-07-05 Started!

d \Socket.h(675) Bound to: 0.0.0.0:5666

1 NSClient++.cpp(402) Using settings from: INI-file

1 NSClient++.cpp(403) Enter command to inject or exit to terminate...

Now you can run the the command again from Nagios like so:

./check_nrpe -H 10.0.0.1
I (0.3.7.7 2009-07-05) seem to be doing fine...

And if you check the log of NSClient++ /test you will this time not see anything and this is because the
"check version" is an internal command so lets try with something slightly more interesting:

./check_nrpe -H 10.0.0.1 -c foobar
UNKNOWN: No handler for that command

And don't worry there is no foobar command but we will see how this looks in NSClient++

d NSClient++.cpp(1034) Injecting: foobar:
1 NSClient++.cpp(1085) No handler for command: 'foobar'
1 \NSCHelper.cpp(238) No handler for command 'foobar'.

4. Finding and solving problems 13

We shall get back a bit to this later on when we have configure NSClient++ more so lets leave this for now.

5. NSClient++ configuration (revisited)

NEClient++ listens
to port 5666

Windows Computer

@ MSCliants+ |- L L

Q

As we said before it is a bit more involved to configure NRPE and yet thus far it has actually been simpler?
This is because we have not configured anything yet all we can do now is talk to NSClient++ but not actually
use it. So in this section we shall cover the basics and first off are some of the configuration options available
for NRPE

5.1 NRPE specific setting in NSClient++

e use_ssl

If this is 1 (true) we will use SSL encryption on the transport. Notice this flag has to be the
same on both ends or you will end up with strange errors. The flag is set on check_nrpe with
the -n option (if you use -n no SSL will be used).

e allow_arguments

Since arguments can be potentially dangerous (it allows your users to control the execution)
there is a flag (which defaults to off) to enable arguments. So if you plan on configure
NSClient++ from the Nagios end you need to enable this. But be warned this is a security
issue you need to think about. If you do not want to allow arguments you can instead
configure all checks in the NSC.ini file and just execute the aliases from nagios.

One important issue with the allow_arguments is that there are more then one! Yes, more
then one! The reason for this is that you can allow arguments from NRPE and you can allow
arguments for external scripts (it is not the same option) which might seem a bit confusing at
first.

¢ allow_nasty_meta_chars
This flag allows arguments to contain "dangerous" characters such as redirection and pipe
(<>l) and makes things a tad more dangerous. But if you decide to use arguments you most
likely want to use this flag as well. But again this is a security risk

So this if you enable this in the INI file you will end up with something like this (extract):

[NRPE]

5. NSClient++ configuration (revisited) 14

; # COMMAND ARGUMENT PROCESSING

; This option determines whether or not the NRPE daemon will allow clients to specify
; arguments to commands that are executed.

allow_arguments=1

; # COMMAND ALLOW NASTY META CHARS

; This option determines whether or not the NRPE daemon will allow clients
; to specify nasty (as in | &><'"\[]{}) characters in arguments.
allow_nasty_meta_chars=1

;# USE SSL SOCKET

; This option controls if SSL should be used on the socket.

use_ssl=1

There are a lot of other options as well but these are the most used ones.

5.2 Modules

The other thing which you should configure is which modules to use. There is (at time of writing) 16 modules
to choose from of which 9 will give you more "checks to run" so choosing which you need can be a bit of
work. Here we shall start out with the basic ones and for details on the rest check out the Modules section in
the wiki.

Module Description Commands
CheckSystem.dll Handles many system checks eCtl;eckCPU, CheckMEM
CheckDisk.dll Handles Disk related checks CheckDisk
CheckExternalScrints. dll Hapdles aliases (which is what we will use) and external N/A
HCCKEXICTNAICTIDLS scripts.
Filel.ogger.dll Logs errors to a file so you can see what is going on N/A
NRPEListener.dll L}stens and responds to incoming requests from Nagios N/A

via NRPE

The finished modules section from the INI file will look like so:

[modules]
CheckSystem.dll
CheckDisk.dll
CheckExternalScripts.dll
FileLogger.dll
NRPEListener.dll

Now we have done some basic setup of NSClient++ and we can continue to try using it a bit more before we
continue with configuring Nagios.

6. Nagios command line (revisited)

5.1 NRPE specific setting in NSClient++ 15

Nagios actively
makes a call to
MEClient++

Nagios Server

o e

Q

Now that we have the agent up and running (if not probably want to go back over the previous sections to get
it up and running before reading on) what can we do with it?. From here on we will assume you have allow
arguments and metchars enabled since it makes it simpler to try things out BEWARED that there are security
implication to this so might wanna read up before rolling this configuration into production.

As we stated before check_nrpe is a lot more powerful then the legacy check_nt and there is a lot of built in
commands as well as a lot of external ones you can use. The built in ones are listed below.

® CheckAlwaysCRITICAL (check)

® CheckAlwaysOK (check)

e CheckAlwaysWARNING (check)

® CheckCPU (check)

® CheckCRITICAL (check)

e CheckCounter (check)

¢ CheckEventl og/CheckEventl.og (check)
e CheckFile (check)

e CheckFileSize (check)

e CheckMem (check)

¢ CheckMultiple (check)

® CheckOK (check)

e CheckProcState (check)

e CheckServiceState (check)

® CheckTaskSched/CheckTaskSched (check)
e CheckUpTime (check)

e CheckVersion (check)

® CheckWARNING (check)

® CheckWMI/CheckWMI (check)

e CheckWMIValue (check)

Lets start with a simple one CheckCPU and see how to use it.
If we check the docs for it it has an example like so:

checkCPU warn=80 crit=90 time=20m time=10s time=4
CPU Load ok.|'20m average'=11%;80; 90;
'10s average'=7%;80;90; '4 average'=10%;80;90;

Now this is a "NSCLient++ /test mode command" so it is not usable in it self for you instead you need to

change it slightly. The first word is the command and the rest are arguments. check_nrpe has two options for
settings commands (-c) and arguments (-a) and is used like so:

6. Nagios command line (revisited) 16

check_nrpe
in this case (CheckCPU) this translates to:

check_nrpe

—-c <command> [-a <argument> <argument> <argument>]

—c CheckCPU -a warn=80 crit=90 time=20m time=10s time=4

CPU Load ok.|'20m average'=11%;80;90; 'l0s average'=7%;80;90; '4 average'=10%;80;90;

And that is as hard as it gets all you need to do is figure out which arguments you want to use for the

command and stack them all in a long line.

7. Nagios configuration

MNagios actively
makes & call to
MEClient++

Nagios Server

=y

~ " generichost) " generic-service
| <template= J | <template= J
A T A AL
tpl-windows-servers
<template=

windowshast CPU Load A

<host= < SeVICE>
| —

Free Space

<senvice:>

1

!

<senice>

check_nrpe
<command=

Nagios configuration is in itself a whole chapter and this is just a quick peek on how you can do things. First

off there are a few concepts to understand:

¢ templates are the same as the corresponding item but they have a flag register = 0 which makes them

"unlistable items"

e services are essentially checks (is check CPU)

¢ hosts are essentially computers

e groups are an important concept which I ignore here for simplicity (I recommend you use it)

7. Nagios configuration

17

The configuration is at the end layer quite simple you have a "check" and a "host" and you connect them with
a service. Like I show at the bottom line in the diagram above. Whats makes this a tad more complicated is
that you can inherit things from a "parent" definition. Which is what I show with arrows (bottom to top)
above. The templates with dashed lines are the base templates which all services and hosts inherit.

7.2 Template

First, its best practice to create a new template for each different type of host you'll be monitoring. Let's create
a new template for windows servers.

define host{

name tpl-windows-servers ; Name of this template
use generic-host ; Inherit default values
check_period 24x7

check_interval 5

retry_interval 1

max_check_attempts 10

check_command check-host-alive

notification_period 24x7

notification_interval 30

notification_options el

contact_groups admins

register 0 ; DONT REGISTER THIS - ITS A TEMPLATE

Notice that the tpl-windows-servers template definition is inheriting default values from the generic-host
template, which is defined in the sample localhost.cfg file that gets installed when you follow the Nagios
quickstart installation guide.

7.3 Host definition

Next we need to define a new host for the remote windows server that references the newly created
tpl-windows-servers host template.

define host{

use tpl-windows-servers ; Inherit default values from a template
host_name windowshost ; The name we're giving to this server

alias My First Windows Server ; A longer name for the server
address 10.0.0.2 ; IP address of the server

Defining a service for monitoring the remote Windows server. These example service definitions will use the
sample commands that are defined in the default NSC.ini file which ships with NSClient 0.3.7 or newer.

7.4 Service definitions
The following service will monitor the CPU load on the remote host. The "alias_cpu" argument which is
passed to the check_nrpe command definition tells NSClient++ to run the "alias_cpu" command as defined in

the alias section of the NSC.ini file.

define service({

use generic-service
host_name windowshost
service_description CPU Load

7.1 Introduction 18

check_command check_nrpe'alias_cpu

}
The following service will monitor the free drive space on /dev/hdal on the remote host.

define service({

use generic-service
host_name windowshost
service_description Free Space
check_command check_nrpe'alias_disk

8. Where to go next

MNagios actively
makes & call to

MSClient++ listens MNSClient++

to port 5666 Firewall

Windows Computer

MSCliants+ |

Nagios Server

=

Firewall allows trafic from
Magios on port 5666

This is of cores not the end now you need to check out what checks you want to use run on your servers.
There is a lot of built-in checks but there are a lot more external scripts you can use and download from for

instance monitoring exchange or the new nagios exchange.

Built in checks:

¢ CheckAlwaysCRITICAL (check)

¢ CheckAlwaysOK (check)
® CheckAlwaysWARNING (check)

® CheckCPU (check)

® CheckCRITICAL (check)

e CheckCounter (check)

¢ CheckEventl.og/CheckEventl.og (check)
¢ CheckFile (check)

e CheckFileSize (check)

¢ CheckMem (check)

e CheckMultiple (check)

® CheckOK (check)

¢ CheckProcState (check)

® CheckServiceState (check)

® CheckTaskSched/CheckTaskSched (check)
¢ CheckUpTime (check)

¢ CheckVersion (check)

® CheckWARNING (check)

® CheckWMI/CheckWMI (check)

¢ CheckWMIValue (check)

7.4 Service definitions

19

http://www.monitoringexchange.org/
http://exchange.nagios.org/

Using NSClient++ from nagios with NSCA

MNSClient++ repoorts

) Magios passivly accepls
status back to Nagios

calls on port 5667

Windows Computer MNagios Server

|
@ O

Firewall allows trafic To
Magios on port 5667

NSCA (Nagios Service Check Acceptor) is a server which runs on the Nagios server and accepts passive
checks results from various servers.

Passive in this context means that Nagios is not the initiator of the actual check commands above. Instead the
client (when it is configure to do so) will submit the results to Nagios (thus it will initiate the data transfer). If

you compare the above image with the one used with NRPE you will notice that the arrow points from the
client to Nagios whereas the NRPE one points from Nagios to your client.

1. Overview of NSCA

1

HEClient++ Wakes up
=1)
NSClient++ Runs all Checks

Windows Computer Magios Server

o b= (EB]

A\ G
\NSClient++ Sends all checks

C
NSClient++ goes back to sleep

As I stated before NSCA is "sort of the reverse" of NRPE and the diagram above illustrates the process by
which Nagios receives the check results.

1. NSClient++ decides it is time to send the results

2. NSClient++ gathers all results

3. NSClient++ connect to NSCA (server) and sends all results
4. NSClient++ goes back to sleap

So in essence NSCA is (again) merely a transport mechanism to send the result of a check command over the
network. But the big change is that this time it is NSClient++ who decides when it is time to do so.

2. NSClient++ configuration

Using NSClient++ from nagios with NSCA 20

Windows Computer |

@ MSClient++

Q

Since NSCA is a server we shall start by configuring NSClient++ as thats were most things will happen. Also
since this is an "advanced" guide it is assumed you have read at least the NRPE guide and are familiar with
the basic working of both Nagios and NSClient++.

2.1 Modules

The first thing you do is to make sure you have all the proper modules loaded. The basic ones we will need for
basic checks in addition to the NSCAAgent. One important thing to notice is that once the NSCAAgent is
loaded it will start (attempting) to submit passive check results. This means that if it not properly configured it
will result in a lot of error messages.

So lets start with the following modules:

Module Description Commands
CheckCPU,

NECKO ySTEm.

CheckSystem.dll Handles many system checks CheckMEM etc

CheckDisk.dll Handles Disk related checks CheckDisk

CheckExternalScripts.dll Hapdles aliases (which is what we will use) and external N/A

PACCREXICINALCIDLS scripts.

CheckHelpers.dll Handles various "utility" checks like CheckOK CheckOK
(amongst others)

Filel ogger.dll Logs errors to a file so you can see what is going on N/A

NSCAAgent.dll Submits passive checks results to NSCA (server) on Nagios |N/A

The resulting modules section in NSC.ini will look like so:

[modules]
CheckSystem.dll
CheckDisk.dll
CheckExternalScripts.dll
CheckHelpers.dll
FileLogger.dll
NSCAAgent.dll

2.2 NSCA Configuration

Then we move on to configure NSCA which is not that hard a quick overview of the basic settings you need
to edit:

interval

2. NSClient++ configuration 21

Perhaps the most important option. It controls the interval which NSClient++ will use when it runs the
checks in essence this is the amount of time between a check will be submitted to Nagios (via NSCA).
Since there is only one of these it will not be possible to have individual intervals for various checks
instead all checks will be submitted using this interval. It is a good idea to set this LOW when you are
debugging things as you will have to wit for this to fire before anything happens.

encryption_method
The encryption algorithm to use. It is often a good idea to set this to O (None) when you try this out as
it will reduce the number things which might be broken. If you have the incorrect one it will be hard
to know what is wrong. For production I would recommend using 14 (AES) at is it a fairly strong
algorithm.

password
The password is the "secret" you share with NSCA it has to be the same on both ends (or again like
with encryption) nothing will work.

nsca_host
This is the IP address of the NSCA server (often the same as the Nagios server). This will not default
to the allowed_hosts directive so you HAVE to specify this option.

The resulting configuration will look something like this:

;# CHECK INTERVALL (in seconds)

8 How often we should run the checks and submit the results.
interval=10

’

; # ENCRYPTION METHOD

8 This option determines the method by which the send_nsca client will encrypt the packets it sends
8 to the nsca daemon. The encryption method you choose will be a balance between security and

8 performance, as strong encryption methods consume more processor resources.

8 You should evaluate your security needs when choosing an encryption method.

; Note: The encryption method you specify here must match the decryption method the nsca daemon uses

8 (as specified in the nsca.cfg file)!!

; Values:

8 0 = None (Do NOT use this option)

8 1 = Simple XOR (No security, just obfuscation, but very fast)

8 2 = DES
8 3 = 3DES (Triple DES)

8 4 = CAST-128

g 6 = xTEA

; 8 = BLOWFISH

; 9 = TWOFISH

8 11 = RC2

9 14 = RIJNDAEL-128 (AES)

; 20 = SERPENT

encryption_method=0

’

;# ENCRYPTION PASSWORD

; This is the password/passphrase that should be used to encrypt the sent packets.
password=secret-password

’

;# NAGIOS SERVER ADDRESS

; The address to the nagios server to submit results to.

nsca_host=192.168.0.1

2.2 NSCA Configuration 22

2.3 NSCA Commands

Now we (hopefully) have configure NSCA which will work splendidly but untill we add some checks it wont

actually do anything. Checks for NSCA is added under the NSCA Commands section. The syntax of this

section is <service definition>=<check command>.

service definition

The service definition is the name of the service IN Nagios.

check command

The check command is the command to run inside NSClient++

There is also a special check called host_check which will correspond to the "host" check command. All
commands supported by NSClient++ can be used here which (apart from the commands listed on this site)
includes all external scripts you define using the ExternalScripts? module.

The resulting section will look something like this:

[NSCA Commands]
CPU Load=alias_cpu
host_check=check_ok

3. NSCA Server

MNagios Server

3

How to configure NSCA falls a bit outside the scope of this tutorial but it is pretty straight forward and a

quick walk through is provided here.
Don't forget the "debug=1" in /etc/nsca.conf

TODO

4. Testing and Debugging

WSClient++ repoors
staties back 1o Nagios ewall

Windows Computer MNagios Server

@ MSClient++ \

Firewall allows trafic To D

Magios on port 5667

Magios passivly accepis
calls on port 5667

2.3 NSCA Commands

23

0.0 0 0 0 0 000000000 0 0

Now lets fire this baby up and see what it can do. As always we will start with with running NSClient++ in

/test mode like so:

NSClient++ /stop
NSClient++ /test

The usual output when NSClient++ boots:

Attempting to start NSCLient++ - 0.3.7.7 2009-07-05

Helper function...
NSCAAgent (w/ encryption)...

Time difference for NSCA server is: O

ok,warning,critical,unknown

NSCLient++ - 0.3.7.7 2009-07-05 Started!

Launching test mode - client mode

d NSClient++.cpp(1106) Enabling debug mode...

d NSClient++.cpp(494)

d NSClient++.cpp(897) Loading plugin:

d NSClient++.cpp(897) Loading plugin:

d \NSCAThread.cpp(77)

d \NSCAThread.cpp(84) Only reporting:

d \NSCAThread.cpp (102) Autodetected hostname: DESKTOP
1 NSClient++.cpp (600)

d \NSCAThread.cpp(171) Drifting: 0

1 NSClient++.cpp(402) Using settings from: INI-file
1 NSClient++.cpp (403)

Enter command to inject or exit to terminate...

Here we will have to wait as NSClient++ (in my example I set the interval to 10 second so I will wait for 10
seconds. Then we get something along the following lines:

\NSCAThread.cpp (252)
\NSCAThread.cpp (297)
\NSCAThread.cpp (189)
NSClient++.cpp (1034)
NSClient++.cpp (1034)
NSClient++.cpp (1070)
NSClient++.cpp (1071)
NSClient++.cpp (1070)
NSClient++.cpp (1071)
\NSCAThread.cpp (189)
NSClient++.cpp (1034)
NSClient++.cpp (1034)
NSClient++.cpp (1070)
NSClient++.cpp (1071)
NSClient++.cpp (1070)
NSClient++.cpp (1071)
\NSCAThread.cpp (245)

Looked up 192.168.0.1 to 192.168.0.1

Finnished sending to server...

Executing (from NSCA): CPU Load

Injecting: alias_cpu:

Injecting: checkCPU: warn=80, crit=90, time=5m, time=1lm, time=30s
Injected Result: OK 'OK CPU Load ok.'

Injected Performance Result: ''bm'=1%;80;90; 'lm'=3%;80;90; '30s'=
Injected Result: OK 'OK CPU Load ok.'

Injected Performance Result: ''bm'=1%;80;90; 'lm'=3%;80;90; '30s'=
Executing (from NSCA) :

Injecting: check_ok:

Injecting: CheckOK: Everything is fine
Injected Result: OK 'Every thing is fine'
Injected Performance Result: ''

Injected Result: OK 'Every thing is fine'
Injected Performance Result: ''

Sending to server...

o .
°r

o .
°r

80;90;

80;90;

And everything looks like it went super... BUT and this is a bit but. the NSCA protocol does not support any
result checking. We submit the result and we are done there is no "returned information" so everything could
have gone terribly wrong and we would not see anything at all.

And here is where we need to start debugging on the Nagios (or NSCA) side.

sudo tail -f /var/log/syslog

will result in the following:

Jul 12 19:35:20 localhost nscal[27093]:
Jul 12 19:35:20 localhost nscal[27093]:
Jul 12 19:35:21 localhost nscal[27093]:

— possibly due to client using wrong password or crypto algorithm?

4. Testing and Debugging

Connection from 192.168.0.104 port 26117
Handling the connection...

Received invalid packet type/version from client

24

And this is clue that we have indeed miss configured NSCA. Most often it is either invalid password or the
wrong encryption so if we make sure these are correct we will end up with the following instead:

Jul 12 19:42:54 localhost nsca[27157]: Connection from 192.168.0.104 port 60421
Jul 12 19:42:54 localhost nsca[27157]: Handling the connection...
Jul 12 19:42:55 localhost nsca[27157]: Dropping packet with stale timestamp - packet was 57 seconds old.

This is another issue you might sometime need to resolve it means the clocks of the machines are not in
perfect syncronization. This can be solved in three ways:

1. Sync the clocks
2. Use the time_delay to change the "local time" in NSClient++
3. Change the max_packet_age in NSCA.cfg

When we have fixed this we end up with the following:

Jul 12 19:47:01 localhost nsca[27207]: Connection from 192.168.0.104 port 8198

Jul 12 19:47:01 localhost nsca[27207]: Handling the connection...

Jul 12 19:47:02 localhost nsca[27207]: SERVICE CHECK —-> Host Name: 'DESKTOP',
Service Description: 'CPU Load', Return Code: '0',
Output: 'OK CPU Load ok.|'bm'=0%;80;90; 'lm'=1%;80;90; '30s'=3%;80;90; '

Jul 12 19:47:02 localhost nsca[27207]: HOST CHECK -> Host Name: 'DESKTOP',
Return Code: '0', Output: 'Everything is fine]|'

Jul 12 19:47:02 localhost nsca[27207]: End of connection...

And this means (hopefully) that communication is all working and all you need to do now is configure the
checks in Nagios.

5. Configure Nagios

MNagios actively
makes & call to
MEClient++

Nagios Server

5.1 Introduction

5. Configure Nagios 25

<template= J | <template= J
B T A A A
tpl-windows-servers
<template=
windowshost CPU Load) check_nrpe
<host= <services <ommand =
- —
Free Space
<senvice:>
1
—
< SETVICE>

Nagios configuration is in itself a whole chapter and this is just a quick peek on how you can do things. First
off there are a few concepts to understand:

¢ templates are the same as the corresponding item but they have a flag register = 0 which makes them
"unlistable items"

¢ services are essentially checks (is check CPU)

¢ hosts are essentially computers

¢ groups are an important concept which I ignore here for simplicity (I recommend you use it)

The configuration is at the end layer quite simple you have a "check" and a "host" and you connect them with
a service. Like I show at the bottom line in the diagram above. Whats makes this a tad more complicated is
that you can inherit things from a "parent” definition. Which is what I show with arrows (bottom to top)
above. The templates with dashed lines are the base templates which all services and hosts inherit.

5.2 Passive Checks
The main difference between passive checks and active checks are the following two flags:
active_checks_enabled
Active service checks are enabled
passive_checks_enabled
Passive service checks are enabled/accepted

So adding the following will "change" an active check to a passive check.

active_checks_enabled 0 ; Active service checks are enabled
passive_checks_enabled 1 ; Passive service checks are enabled/accepted

So you say what shall I enter for command for my passive checks?
There are several options for this depending on what you want I wont (as always) go into the details in this
quick guide but the short of it is either you use check_dummy or you use the actual command and setup

freshness checks. With freshness checks active it means that if a result is not submitted Nagios will actively
go out and seek the information (this is what I would recommend for host checks at least).

5.1 Introduction 26

5.3 Template

First, its best practice to create a new template for each different type of host you'll be monitoring. Let's create
a new template for windows servers.

define host{

name tpl-windows-servers ; Name of this template
use generic-host ; Inherit default values
check_period 24x7

check_interval 5

retry_interval 1

max_check_attempts 10

check_command check-host-alive

notification_period 24x7

notification_interval 30

notification_options el

contact_groups admins

register 0 ; DONT REGISTER THIS - ITS A TEMPLATE

Notice that the tpl-windows-servers template definition is inheriting default values from the generic-host
template, which is defined in the sample localhost.cfg file that gets installed when you follow the Nagios
quickstart installation guide.

5.4 Host definition

Next we need to define a new host for the remote windows server that references the newly created
tpl-windows-servers host template.

define host{

use tpl-windows-servers ; Inherit default values from a template
host_name windowshost ; The name we're giving to this server

alias My First Windows Server ; A longer name for the server
address 10.0.0.2 ; IP address of the server

active_checks_enabled 0 ; Active host checks are enabled
passive_checks_enabled 1 ; Passive host checks are enabled/accepted

Defining a service for monitoring the remote Windows server. These example service definitions will use the
sample commands that are defined in the default NSC.ini file which ships with NSClient 0.3.7 or newer.

5.5 Service definitions
The following service will monitor the CPU load on the remote host. The "alias_cpu" argument which is
passed to the check_nrpe command definition tells NSClient++ to run the "alias_cpu" command as defined in

the alias section of the NSC.ini file.

define service({

use generic-service

host_name windowshost

service_description CPU Load

check_command check_nrpe'alias_cpu

active_checks_enabled 0 ; Active service checks are enabled
passive_checks_enabled 1 ; Passive service checks are enabled/accepted

5.3 Template 27

The following service will monitor the free drive space on /dev/hdal on the remote host.

define service({

use generic-service

host_name windowshost

service_description Free Space

check_command check_nrpe'alias_disk

active_checks_enabled 0 ; Active service checks are enabled
passive_checks_enabled 1 ; Passive service checks are enabled/accepted

Now a better way here is to add a new template and derive the service checks for a "tpl-passive-service"
instead and put the passive options there but alas I was to lazy to do so in this quick guide.

6. Where to go next

MSClient++ repooris

) Magios passivly accepls
status back to Nagios

calls on port 5667

Windows Computer MNagios Server

T
@ O

Firewall allows trafic To
Magios on port 5667

This is of cores not the end now you need to check out what checks you want to use run on your servers.
There is a lot of built-in checks but there are a lot more external scripts you can use and download from for

instance monitoring exchange or the new nagios exchange.

Built in checks:

¢ CheckAlwaysCRITICAL (check)

¢ CheckAlwaysOK (check)
¢ CheckAlwaysWARNING (check)

® CheckCPU (check)

® CheckCRITICAL (check)

¢ CheckCounter (check)

¢ CheckEventl.og/CheckEventl.og (check)
e CheckFile (check)

¢ CheckFileSize (check)

¢ CheckMem (check)

¢ CheckMultiple (check)

¢ CheckOK (check)

¢ CheckProcState (check)

¢ CheckServiceState (check)

® CheckTaskSched/CheckTaskSched (check)
¢ CheckUpTime (check)

¢ CheckVersion (check)

¢ CheckWARNING (check)

® CheckWMI/CheckWMI (check)

¢ CheckWMIValue (check)

5.5 Service definitions

28

http://www.monitoringexchange.org/
http://exchange.nagios.org/

	Table of Contents
	Using NSClient++ from nagios
	Choosing a transport
	NSClient (check_nt)
	NRPE (check_nrpe)
	NRPE and NSClient Server
	NSCA (nsca-server)
	Make Your Own

	Using NSClient++ from nagios with check_nt
	1. Nagios command line
	2. NSClient++ configuration
	3. Solving problems
	4. Nagios configuration
	5. Final words

	Using NSClient++ from nagios with check_nrpe
	1. Overview of NRPE
	2. Nagios command line
	3. NSClient++ configuration
	4. Finding and solving problems
	5. NSClient++ configuration (revisited)
	5.1 NRPE specific setting in NSClient++
	5.2 Modules

	6. Nagios command line (revisited)
	7. Nagios configuration
	7.1 Introduction
	7.2 Template
	7.3 Host definition
	7.4 Service definitions

	8. Where to go next

	Using NSClient++ from nagios with NSCA
	1. Overview of NSCA
	2. NSClient++ configuration
	2.1 Modules
	2.2 NSCA Configuration
	2.3 NSCA Commands

	3. NSCA Server
	4. Testing and Debugging
	5. Configure Nagios
	5.1 Introduction
	5.2 Passive Checks
	5.3 Template
	5.4 Host definition
	5.5 Service definitions

	6. Where to go next

