
Table of Contents
About NSClient++...1

Supported OS/Platform..2

Whats in a name?..3

Become a sponsor..4

Current sponsors...5
OP5..5
Opsview...5

Fans of NSClient++...7

Installing NSClient++...8
1. Installation...8
2. Configuration...8
3. System tray..8
4. Testing and Debugging..8
5. Windows Firewall..9
6. External Firewall (optional)...9

Installing NSClient++...10
1. Installation...10
2. Configuration...10
3. System tray..10
4. Testing and Debugging..10
5. Windows Firewall..11
6. External Firewall (optional)...11

Installation...12

Firewall..13

NT4...14

System Tray Installation Guide...15

SERVICE_INTERACTIVE_PROCESS 'way'..16

Client-server 'way'..17

Installation guide...18
NT4, 2000, XP (old)..18
XP, 2k3, Vista, Windows 7, etc (modern)...18

i

Table of Contents
Dependencies for Windows NT4..19

PDH library (CPU, memory, etc etc)...19
PSAPI (process checks)...19

Configuration..20
Modules...20
Settings...21
includes..21

Module Configuration..22
NRPE Listener Sections...22

NRPE Section..22
NRPE Handlers Section..25

File Logging Sections..26
Log Section..26

NSClient Sections..27
NSClient Section...27

Check System Sections..30
CheckSystem Section..30

External Script Sections...33
External Script Section..33
External Scripts Section..35
External Alias Section...36

Event Log Sections..36
Event Log Section...36
EventLog?...36

NSCA Agent Sections...37
NSCA Agent Section...37
NSCA Commands Section..39

LUA Scripts...40

Problems..41
1. I am having problems where do I start?...41
2. Failed to open performance counters...41
3. Bind failed..41
4. "EvenlogBuffer?? is too small...41
5. How do I properly escape spaces in strings...41
6. How do I properly escape $ in strings...42
7. System Tray does not work..42

Older WIndows...42
"modern" windows..42

Modules..43
CheckDisk..43
CheckEventLog..43
CheckSystem...43
CheckHelpers...43
FileLogger..43

ii

Table of Contents
Modules

NRPEListener..44
NSClientListener...44
SysTray..44
CheckWMI...44
CheckTaskSched..44
CheckExternalScripts...44
LUAScript..44
NSCAAgent...44
RemoteConfiguration...44

All Commands...45

CheckDisk.dll..46
Configuration Sections..46

Configuration for the CheckDisk..47
Configuration Sections..47

CheckFileSize..48
Examples..48

Check the size of the windows directory...48
Check the size of the pagefile.sys...49
Multiple files...49
Single file..49
Some exchange database thing..50

CheckDriveSize...51
Examples..51

Check C:..51
Volumes...52
Volumes...52
All fixed and network disks...53
Fixed and Network (ignore some)...53
Checking UNC Paths...53
Simple Config..54

CheckFile...55

CheckFile2...56
Syntax..56
Order..56
Filter modes...57
Filter Types..57

time expression..57
string expression..57

Filter in/out..57
Some more Examples (for 0.3.8)...58

iii

Table of Contents
CheckEventLog.dll..61

Configuration Sections..61
EventLog?...61

Configuration for the CheckEventLog...63
Configuration Sections..63

EventLog?...63

CheckEventLog...65
Filter Keywords...65
Operators..65
Writing Filters..66
Using Keywords...66

id (event id)...66
source (program generating the event)..67
generated (when the event was generated)..67
Written...68
Severity..68
Type...68
Message...68
Strings..68

Examples..68

CheckEventLog...69
Syntax..69
Order..70
Filter modes...70
Filter Types..70

event type expression..71
event severity expression...71
time expression..71
string expression..71

Filter in/out..71
Unique..72
Examples..72

Sample Eventlog Command..72
Another sample..72
Check if a script is running as it should..73

Don't understand filtering ?...74
Options...74
Rules..74
How it works..74

Pseudo code (filter=new)..74

CheckSystem.dll..76
Command Line..76
Configuration Sections..76

iv

Table of Contents
CheckSystem.dll

CheckSystem Section..76

Configuration for the CheckSystem..80
CheckSystem Section..80

Overview...80

CheckCPU...84
Configuration...84
FAQ...84
Examples..84

Sample Command...84
Multiple Time entry...85
check_load...85

CheckUpTime..86
Examples..86

CheckServiceState...87
Configuration...87
Examples..87

Sample check...87
Auto started...87
Service name with spaces..88

CheckProcState...89
Examples..90

Process running/not running..90
Process running/not running..90
Check number of processes running...91
Substrings and commandline...91
More process counts..91

CheckMem...93
Examples..93

Page...93
Physical...94
Multiple...94

CheckCounter...95
FAQ...95
Command line..95
check_nt vs. check_nrpe..96
Examples..96

Sample Command...96
Using Instances..96
Microsoft Exchange 5.5 IS RPC Operations / Sec..97
Windows 2000/2003 Physical Disk Time...97

v

Table of Contents
CheckHelpers.dll...98

Configuration...98

CheckAlwaysOK...99
Examples..99

CheckAlwaysCRITICAL...100
Examples..100

CheckAlwaysWARNING...101
Examples..101

CheckOK...102
Examples..102

CheckCRITICAL..103
Examples..103

CheckWARNING...104
Examples..104

CheckMultiple...105
Examples..105

CheckVersion..106
Examples..106

CheckTaskSched.dll..107
Configuration...107

CheckTaskSched...108
Arguments:...108

FileLogger.dll..110
Configuration Sections..110

Overview...110

Configuration for the FileLogger..112
Configuration Sections..112

Overview...112

NRPEListener.dll..114
Configuration Sections..114

NRPE Section..114
NRPE Handler Section..117

vi

Table of Contents
Configuration for the NRPEListener..119

NRPE Section..119
Overview...119

NRPE Handler Section..122
Ovreview...122

NSClientListener.dll...124
Configuration Sections..124

NSClient Section...124
Examples..126

Configuration for the NSClientListener...127
NSClient Section..127

Ovreview...127

SysTray.dll...130

CheckWMI.dll...131
Configuration...131

CheckWMI..132
Filters...132
Filter <Mode>s..133
Filter <Type>s..133
Filter <Columns>s...133
string expression..133
columnSyntax..133
Examples..133

A sample query..133
Using Query Alias...134
Overriding Query Alias...134
Checking With filters..135
Debbuging queries...135

CheckWMIValue..136
Examples..136

CHeck Threads in a process..137
Ping status..137
Using from command line...138

CheckExternalScripts.dll...139
Configuration for the CheckExternalScripts..139

External Script...139
External Scripts...141
External Alias..141

Examples..142
Check Users Logged In...142

vii

Table of Contents
Configuration for the CheckExternalScripts...143

External Script...143
Overview...143

External Scripts..145
Overview...145

External Alias...145
Overview...145

LUAScript.dll..146
Configuration...146

[LUA Scripts]..146

Debugging Lua..147

A simple script...148

Structure of a script..149

A 'useful' script...150

NSCAAgent.dll..151
Configuration...151

NSCA Agent Section...151
NSCA Commands Section..153

Configuration for the NSCAAgent..154
NSCA Agent Section...154

Ovreview...154
NSCA Commands Section...156

Overview...156

viii

About NSClient++
NSClient++ (or nscp as I tend to call it nowadays) aims to be a simple yet powerful and secure monitoring
daemon for Windows operating systems. It is built for Nagios, but nothing in the daemon is actually Nagios
specific and could probably, with little or no change, be integrated into any monitoring software that supports
running user tools for polling.

The structure of the daemon is a simple NT service that loads plug-ins to an internal stack. The plug-ins can
then request data (poll performance data) from the other plug-ins through the internal stack. As of now there
are a few plug-ins for basic performance data collection. For details of supplied modules, see
CheckCommands.

NSClient++ can be extended in two ways: you can either write your own plug-in or you can execute an
external script (as of now batch/exe/*). Writing your own plug-in is, of course, the most powerful way but
requires knowledge of C++ or other languages which can produce DLLs and interface with regular C
programs (generally, every other language available, but there is some simple API helpers for C/C++ as well
as descriptions).

As for checking with NSClient++, I would recommend NRPE as it is a lot more flexible than check_nt. But
NSClient has full support for check_nt, and if there is an interest, I could probably add support for check_nt
from nc_net.

About NSClient++ 1

Supported OS/Platform
NSClient++ should run on the following operating systems:

NT4 (SP5?)•
Windows 2000 W2K•
Windows XP•
Windows 2003•
Windows Vista•
Windows 2008 (some issue reported with the installer, run as admin)•
Windows 7 (some issue reported with the installer, run as admin)•
...•

...as well as the following platforms:

Win32•
x64 (AMT64/EMT64)•
IA64 (Itanium, but no recent builds due to compiler expensiveness, feel free to compile it your self
though)

•

Supported OS/Platform 2

Whats in a name?
Since I have noticed some ppl. use other names for the client I decided to list them here to make it simpler (ie.
Goggle might find it) for people to find it.

NSClient++ (the "real" name)•
NSCP (what I sometimes use)•
NSClientpp (version of NSCLient++)•
NSClient (?)•
Saw a French (Spanish) site use: NSC++•

Again I myself as stated before prefer NSClient++ or NSCP.

:-)

My Name is Michael Medin and I am the author of this program (an also handles a lot of the support and
such).

You can find me around the web here:

Messengers:

EMail: michael at medin dot name•
ICQ: 1818494•
MSN: michael at medin dot name•
Jabber: mickem @ jabber dot nakednuns dot org•
...•

Communities:

LinkedIn?: http://www.linkedin.com/in/mickem•
Last.fm: http://www.last.fm/user/mickem•
LibraryThing?: http://www.librarything.com/profile/mickem•
...•

Whats in a name? 3

http://www.linkedin.com/in/mickem
http://www.last.fm/user/mickem
http://www.librarything.com/profile/mickem

Become a sponsor
NSClient++ is a free and open source tool not backed by any commercial entity. In fact I don't even work with
Nagios so this is a 100% "spare time effort".

So if you like and use NSClient++ and perhaps even make money from using it. Feel free to become an
official sponsor of NSClient++. The sponsoring program is pretty loose as of yet but the main ideas are to
have three "levels" of sponsoring:

Gold Sponsor
Contribution: Euro 1'000 / year♦
You get you company logo in the projects (this site) website navigation bar. Visible on
around 75.000 page impressions per month (12-15.000 unique visitors per month).

♦

Free e-mail support1 (5 premium2 issues)♦
Custom built3 (branded) version of NSClient++ (optional)♦

•

Silver Sponsor
Contribution: Euro 100 / year♦
You get your company logo on the sponsors page of the projects website (this page).♦
Free e-mail support1 (1 premium2 issue).♦

•

NSClient++ Fan
Any kind of donation♦
You get your name listed together with your donation on the NSClient++ fan page.♦
"Free support" (when I or the community have the time)♦
Become a Fan today♦

•

If you have any questions about becoming a sponsor, please be contact me on info@nsclient.com.

If you have donated before and want to be listed on the fan page contact me and I will add you, since there
was no "opt out" I am hesitant to add peoples names without prior consent.

Become a sponsor 4

mailto:info@nsclient.com

Current sponsors
A big thank you to my current sponsors.

OP5

Opsview

Opsview® is enterprise system monitoring software designed for scalability, flexibility and ease of use.
Software was awarded a Product Excellence award for Best System Management Tool at LinuxWorld Expo in
San Francisco during August 2008.

Opsview, in development since 2003 is a fully integrated monitoring tool that incorporates popular Open
Source software including Nagios® Core, Nagvis, Net-SNMP and RRDtool. The Catalyst web framework
provides an extensible monitoring and configuration user interface. Opsview server software runs on Linux
and Solaris 10. It will monitor all common operating systems including Linux, AIX, Solaris and Windows.
The Opsview engineering group contains members of the Nagios developer team

Opsview provides enterprise monitoring features without the complexity or expense of traditional proprietary
software.

Fully supported. Four levels of Opsview subscription available.•
Incorporates the Nagios® Core monitoring engine allowing use of a wide range of Nagios plugins and
add-ons

•

Released under the GNU GPL v2 Open Source license•
Scalability and resilience through distributed monitoring architecture•
SNMP polling and trap processing•
Built on extensible web framework•
User interface designed around simplicity and ease of use•
APIs for monitoring, notification and configuration•
Active user and developer communities•

Opsview has users in telecommunications, financial services, government, education, media, IT services and
e-commerce industries.

1. All support is provided on a best-effort basis1.
2. A premium issue is an issue where you request direct help outside "normal channels"2.

Current sponsors 5

http://nagios.org/
http://www.nagvis.org/
http://net-snmp.sourceforge.net/
http://oss.oetiker.ch/rrdtool/
http://www.catalystframework.org/
http://sourceforge.net/projects/nagios/
http://www.opsera.com/opsview_support.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

3. For instance you might want to bundle specific script, and/or configuration to make it simpler for
you to roll it out.

3.

Opsview 6

Fans of NSClient++
A lit of fans (who have donated to the project):

???-??-?? Johnny Wetlaufer nice logo design•

2009-11-25 Pawe? Sosnowski•
2009-08-12 Thomas Wallutis•
2009-08-04 Nicolas Schmitz•
2009-06-15 Gerhard Laußer•
2010-04-19 ????? ????????•
2010-04-25 Anthony Hogan•
2010-04-29 ????? ???????? (again, thanx :)•

Fans of NSClient++ 7

Installing NSClient++
This is a grooving process before it was all manual but slowly we are getting a more "automated" installation
process so hopefully this will keep improving in the future as well and some of the steps might go away.

1. Installation

NSClient++ comes with an interactive installer (MSI) which should preferably be used. There is also a
command line option for registering (and de-registering) the service for details refer to the manual installation
guide. If you are using Windows NT4 there is some dependencies you need to manually install for details
refer to the NT4 Dependency guide.

Thus to install the Client you simply click the MSI package (for your platform) and follow the wizard
through. BUT and this is a big but after you have installed it it still needs to be configure (which is done with
your favorite text editor).

2. Configuration

Before you start NSClient++ you need to configure it by editing the configuration file (NSC.ini). The
configuration file is a simple text file and is explained in detail under Configuration.

The configuration file (NSC.ini) NEEDS to be configured as for security reasons all plug-ins are disabled by
default. The reason for this is so no one will accidentally install this and get potential security issues, I believe
that things should be "off" by default. Also notice that by default allowed_hosts are 127.0.0.1 so you need to
modify this as well.

3. System tray

If you plan to use the SystemTray module (that shows a system tray icon on the desktop you need to install
the SystemTray module as well as NSClient++ on "old" versions of windows (XP and blow) on modern
version of windows (XP and above) you can used the new experimental shared session support. For details on
this see the System tray installation guide.

4. Testing and Debugging

After you have installed NSClient++ you need to start it which is done which can be done in several ways as it
is a normal service (so either fire up a command line and use the net start/stop command of you can use the
computer manager services node.

When you are starting yout and/or configuring your client you can use the "debug" mode which will be very
helpfull as you will see the debug log in "real time" whrn you play around with it. To start NSClient++ in
test/debug mode use the following command (you can also use the icon on the start menu):

NSClient++ /test

Installing NSClient++ 8

5. Windows Firewall

I have yet to foigure this one out but hopefully someone can help me write this! I shall for the next version try
to make an automated exception thingy for the windows firewall.

6. External Firewall (optional)

Firewall configuration should be pretty straight forward:

If you use NRPEListener (check_nrpe) you need the NRPE port open (usually 5666) from the nagios
server towards the client.

•

If you use the NSClientListener (check_nt) you need the (modified) NSClient port open (usually
12489) from the nagios server towards the client.

•

If you use the NSCA Module (passive checks) you need the NSCA port open from the client towards
the nagios server. client:* -> nagios:5667

•

If you use the NRPEClient module to check any remote systems (use NSClient++ as a proxy) you
need to have NRPE port (usually 5666) open from NSClient++ (the proxy) to the remote-client in
addition to the method you use to submit the results to the server. nsclient-proxy:* ->
remote-client:5666

•

Protocol Source Sourceport Destination Destination
port Comment

NRPE nagios <all> Client 5666 The nagios server initiates a call to the client
on port 5666

NSClient nagios <all> Client 12489 The nagios server initiates a call to the client
on port 12489

NSCA client <all> nagios 5667 The client initiates a call to the nagios server
on port 5667

NRPE-proxy client <all> remote-client 5666 The client initiates a call to the remote client
on port 5666

nagios Is the ip/host of the main nagios server•
client is the windows computer where you have installed NSClient++•
remote-client is the "other" client you want to check from NSClient++ (using NSClient++ as a proxy)•

All these ports can be changed so check your nsc.ini.

5. Windows Firewall 9

Installing NSClient++
This is a grooving process before it was all manual but slowly we are getting a more "automated" installation
process so hopefully this will keep improving in the future as well and some of the steps might go away.

1. Installation

NSClient++ comes with an interactive installer (MSI) which should preferably be used. There is also a
command line option for registering (and de-registering) the service for details refer to the manual installation
guide. If you are using Windows NT4 there is some dependencies you need to manually install for details
refer to the NT4 Dependency guide.

Thus to install the Client you simply click the MSI package (for your platform) and follow the wizard
through. BUT and this is a big but after you have installed it it still needs to be configure (which is done with
your favorite text editor).

2. Configuration

Before you start NSClient++ you need to configure it by editing the configuration file (NSC.ini). The
configuration file is a simple text file and is explained in detail under Configuration.

The configuration file (NSC.ini) NEEDS to be configured as for security reasons all plug-ins are disabled by
default. The reason for this is so no one will accidentally install this and get potential security issues, I believe
that things should be "off" by default. Also notice that by default allowed_hosts are 127.0.0.1 so you need to
modify this as well.

3. System tray

If you plan to use the SystemTray module (that shows a system tray icon on the desktop you need to install
the SystemTray module as well as NSClient++ on "old" versions of windows (XP and blow) on modern
version of windows (XP and above) you can used the new experimental shared session support. For details on
this see the System tray installation guide.

4. Testing and Debugging

After you have installed NSClient++ you need to start it which is done which can be done in several ways as it
is a normal service (so either fire up a command line and use the net start/stop command of you can use the
computer manager services node.

When you are starting yout and/or configuring your client you can use the "debug" mode which will be very
helpfull as you will see the debug log in "real time" whrn you play around with it. To start NSClient++ in
test/debug mode use the following command (you can also use the icon on the start menu):

NSClient++ /test

Installing NSClient++ 10

5. Windows Firewall

I have yet to foigure this one out but hopefully someone can help me write this! I shall for the next version try
to make an automated exception thingy for the windows firewall.

6. External Firewall (optional)

Firewall configuration should be pretty straight forward:

If you use NRPEListener (check_nrpe) you need the NRPE port open (usually 5666) from the nagios
server towards the client.

•

If you use the NSClientListener (check_nt) you need the (modified) NSClient port open (usually
12489) from the nagios server towards the client.

•

If you use the NSCA Module (passive checks) you need the NSCA port open from the client towards
the nagios server. client:* -> nagios:5667

•

If you use the NRPEClient module to check any remote systems (use NSClient++ as a proxy) you
need to have NRPE port (usually 5666) open from NSClient++ (the proxy) to the remote-client in
addition to the method you use to submit the results to the server. nsclient-proxy:* ->
remote-client:5666

•

Protocol Source Sourceport Destination Destination
port Comment

NRPE nagios <all> Client 5666 The nagios server initiates a call to the client
on port 5666

NSClient nagios <all> Client 12489 The nagios server initiates a call to the client
on port 12489

NSCA client <all> nagios 5667 The client initiates a call to the nagios server
on port 5667

NRPE-proxy client <all> remote-client 5666 The client initiates a call to the remote client
on port 5666

nagios Is the ip/host of the main nagios server•
client is the windows computer where you have installed NSClient++•
remote-client is the "other" client you want to check from NSClient++ (using NSClient++ as a proxy)•

All these ports can be changed so check your nsc.ini.

5. Windows Firewall 11

Installation
NSClient++ comes simple command line option for registering (and deregistering) the service but it does not
have a GUI installer.

Thus to install the Client you only need to copy the files to a directory of your choice and then run
?NSClient++ /install?.

Before you start NSClient++ you need to configure it by editing the configuration file (NSC.ini). The
configuration file is a simple text file and is explained in detail under Configuration. The files needed by
NSClient++ varies but mainly the exe and DLL's in the NSClient++ root are required as well as all the
modules you plan to use from the modules subdirectory (/modules/*).

The configuration file (NSC.ini) NEEDS to be configured as for security reasons all plug-ins are disabled by
default. The reason for this is so no one will accidentally install this and get potential security issues, I believe
that things should be "off" by default. Also notice that by default allowed_hosts are 127.0.0.1 so you need to
modify this as well.

If you plan to use the SystemTray module (that shows a system tray icon on the desktop you need to install
the SystemTray module as well as NSClient++. To install NSClient++ execute the following command:

 NSClient++ /install
 NSClient++ SysTray install

To uninstall NSClient++ execute the following command:

 NSClient++ SysTray uninstall
 NSClient++ /uninstall

To start NSClient++ execute the following command:

 NSClient++ /start

To stop NSClient++ execute the following command:

 NSClient++ /stop

If you only wish to test it or debug the client you can use the following without installing it first.

 NSClient++ /test

Installation 12

Firewall
Firewall configuration should be pretty straight forward:

If you use NRPEListener (check_nrpe) you need the NRPE port open (usually 5666) from the nagios server
towards the client.

nagios:* -> client:5666

If you use the NSClientListener (check_nt) you need the (modified) NSClient port open (usually 12489) from
the nagios server towards the client.

nagios:* -> client:12489

If you use the NSCA Module (passive checks) you need the NSCA port open from the client towards the
nagios server.

client:* -> nagios:5667

If you use the NRPEClient module to check any remote systems (use NSClient++ as a proxy) you need to
have NRPE port (usually 5666) open from NSClient++ (the proxy) to the remote-client in addition to the
method you use to submit the results to the server.

nsclient-proxy:* -> remote-client:5666

All these ports can be changed so check your nsc.ini.

Firewall 13

NT4
NT4 does not come with the PDH library and you need to install that before using NSClient++. PDH can be
downloaded from Microsoft: http://support.microsoft.com/default.aspx?scid=kb;en-us;Q284996 and the
simplest way to install it is to uncompress it directly into the NSClient++ directory.

NT4 also (sometimes) lack the PSAPI helper which is available in the "Platform SDK Redistributable: PSAPI
for Windows NT" from Microsoft.
http://www.microsoft.com/downloads/details.aspx?FamilyID=3d1fbaed-d122-45cf-9d46-1cae384097ac as
with the PDH either install in system32 or local NSClient++ directory.

NT4 14

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q284996
http://www.microsoft.com/downloads/details.aspx?FamilyID=3d1fbaed-d122-45cf-9d46-1cae384097ac

System Tray Installation Guide
This is a subject which I think many people have trouble with so I wrote up a simple guide for it.

The first thing you should understand is that there are two ways in windows to do "system trays".

SERVICE_INTERACTIVE_PROCESS This works splendidly for Windows:es up till and including
XP

•

Client-server (or shared session) This works splendidly from (including) CP and beyond. This also
works (sort of) on windows 2000 (but not NT) but in my case I would recommend using XP since the
session handling changed in XP.

•

System Tray Installation Guide 15

SERVICE_INTERACTIVE_PROCESS 'way'
This is the "old" way and has been in use up until including windows XP.

The details on a technical level is that the service has a flag "SERVICE_INTERACTIVE_PROCESS" which
allows it to interact with the "desktop" so what we do in NSClient++ is simply add an icon to the desktop and
voila system tray support in a few lines of code all neat and tidy inside the same process.

<<<Add nice image here>>>

SERVICE_INTERACTIVE_PROCESS 'way' 16

Client-server 'way'
Now since the "old" way was so simple Microsoft had to go about changing it (of course) so the "new" way
which works from (including) XP and above. Technically it works from Windows 2000 but slightly different
so I would recommend using it on XP and above.

The reason for this is that in "modern" windows there is no "desktop" there is instead several desktops one of
which is there the system tray from NSClient++ will end up (session 0). And unfortunately this (session 0) is
not the one where the logged in user ends up (which is session 1 and above). This is all down to the "User
switching" which was introduced when terminal server was "sort of integrated" into windows 2000.

So what can we do to circumvent this?

Quite simply we can launch a program in the logged in users session and have them communicate with each
other.

This is done by triggering on the "user logged in" (or as it is called in the debug log "Got session change...")
and if enabled (shared_session=1) launch a process into that users session and hope that they will
communicate with each other. The actual communication is done using a shared session (technically a bunch
of shared semaphores and a bunch of shared memory areas).

<<<Add nice image here>>>

BETA WARNING Now this will introduce a lot of challenges and problems and as of now it is more of a
technical preview then a stable and mature thing I would enable in production.

Client-server 'way' 17

Installation guide
THis is split into two section "old" and "modern".

NT4, 2000, XP (old)

NSC.ini

[modules]
SysTray.dll

Then run:

NSClient++ -noboot systray install

XP, 2k3, Vista, Windows 7, etc (modern)

[settings]
shared_session=1

And:

Don't enable SysTray.dll•
Don't run the "systray install" thingy above.•

Installation guide 18

Dependencies for Windows NT4
Since windows NT4 is OLD (yes it is really old and you should think about upgrading) it has some
dependencies which I have decided not to resolve easily. This means you need to install some Microsoft
components to get tings up and running on Windows NT4.

Hopefully this should not be to hard and not cause you any problems.

PDH library (CPU, memory, etc etc)

NT4 does not come with the PDH library and you need to install that before using NSClient++. PDH can be
downloaded from Microsoft: http://support.microsoft.com/default.aspx?scid=kb;en-us;Q284996 and the
simplest way to install it is to uncompress it directly into the NSClient++ directory.

PSAPI (process checks)

NT4 (sometimes) lack the PSAPI helper which is available in the "Platform SDK Redistributable: PSAPI for
Windows NT" from Microsoft.
http://www.microsoft.com/downloads/details.aspx?FamilyID=3d1fbaed-d122-45cf-9d46-1cae384097ac as
with the PDH either install in system32 or local NSClient++ directory.

Dependencies for Windows NT4 19

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q284996
http://www.microsoft.com/downloads/details.aspx?FamilyID=3d1fbaed-d122-45cf-9d46-1cae384097ac

Configuration
Configuration is fairly simple and straight forward. Open the configuration file in notepad (or your favorite
editor) "notepad <installation path>\NSC.ini" and edit it accordingly. A longer description of the
Configuration file is included in the following page.

The file has sections (denoted with section name in brackets) and key/value pairs (denoted by key=value).
Thus it has the same syntax as pretty much any other INI file in windows.

The sections are described in short below. The default configuration file has a lot of examples and comments
so make sure you change this before you use NSClient++ as some of the examples might be potential security
issues.

The configuration can also be stored in the system registry (HKLM\Software\NSClient++) there is currently
no UI to configure this so the simplest way is to maintain the configuration in the INI file and "Migrate that"
to the registry. This is can be done via the [RemoteConfiguration] module but in short:

NSClient++ -noboot RemoteConfiguration ini2reg

A sample configuration file is included in the download but can also be found here trunk/NSC.dist

Modules

This is a list of modules to load at startup. All the modules included in this list has to be NSClient++ modules
and located in the modules subdirectory. This is in effect the list of plug-ins that will be available as the
service is running. For information on the various plug-ins check the Modules section in the navigation box.

A good idea here is to disable all modules you don?t actually use for two reasons. One less code equals less
potential security holes and two less modules means less resource drain.

A complete list of all available modules:

CheckDisk (module)•
CheckEventLog (module)•
CheckExternalScripts (module)•
CheckHelpers (module)•
CheckSystem (module)•
CheckTaskSched (module)•
CheckWMI (module)•
FileLogger (module)•
LUAScript (module)•
NRPEListener (module)•
NSCAAgent (module)•
NSClientListener (module)•
RemoteConfiguration (module)•
SysTray (module)•

Configuration 20

Settings

This section has generic options for how NSClient++will work, some of these settings (such as
allowed_hosts) is inherited in sections below so it is probably a better idea to set them here in the "global"
section.

The options you have available here are

Option Default
value Description

obfuscated_password ...
An obfuscated version of password. For more details refer to the password
option below. To create the obfuscated Password use: "NSClient++.exe
/encrypt"

password ... The password used by various (presently only NSClient) daemons. If no
password is set everyone will be able to use this service remotely.

allowed_hosts 127.0.0.1

A list (comma separated) with hosts that are allowed to connect and query
data. If this is empty all hosts will be allowed to query data. BEWARE:
NSClient++ will not resolve the IP address of DNS entries if the service is
set to startup automatically. Use an IP address instead.

use_file 0 Has to be set to 1 if you want the file to be read (if set to 0, and the use_reg
is set to 1 the registry will be used instead)

Advanced options:

Option Default
value Description

master_key ... The secret "key" used when (de)obfuscating passwords.

cache_allowed_hosts 1 Used to cache looked up hosts if you check dynamic/changing hosts set
this to 0.

includes

A list of other configuration files to include when reading this file. Might be useful if you have a very
complex setup or want to have setting split up in segments.

Settings 21

Module Configuration

NRPE Listener Sections

NRPE Section

This is section is included from the following page NRPEListener/config/nrpe

Overview
port1.
allowed_hosts2.
use_ssl3.
bind_to_address4.
command_timeout5.
allow_arguments6.
allow_nasty_meta_chars7.
socket_timeout8.
script_dir9.
performance_data10.
socket_back_log11.
string_length12.

1. 1. 1. 1.

Overview

This is configuration for the NRPE module that controls how the NRPE listener operates.

Option Default Description
port 5666 The port to listen to
allowed_hosts A list of hosts allowed to connect via NRPE.
use_ssl 1 Boolean value to toggle SSL encryption on the socket connection

command_timeout 60
The maximum time in seconds that a command can execute. (if more then
this execution will be aborted). NOTICE this only affects external
commands not internal ones.

allow_arguments 0

A Boolean flag to determine if arguments are accepted on the incoming
socket. If arguments are not accepted you can still use external commands
that need arguments but you have to define them in the NRPE handlers
below. This is similar to the NRPE "dont_blame_nrpe" option.

allow_nasty_meta_chars 0 Allow NRPE execution to have ?nasty? meta characters that might affect
execution of external commands (things like > ? etc).

socket_timeout 30 The timeout when reading packets on incoming sockets. If the data has not
arrived within this time we will bail out. and discard the connection.

Advanced options:

Option Default Description

performance_data 1 Send performance data back to nagios (set this to 0 to remove all performance
data)

socket_back_log

Module Configuration 22

Number of sockets to queue before starting to refuse new incoming connections.
This can be used to tweak the amount of simultaneous sockets that the server
accepts. This is an advanced option and should not be used.

string_length 1024
Length of payload to/from the NRPE agent. This is a hard specific value so you
have to "configure" (read recompile) your NRPE agent to use the same value for
it to work.

script_dir Load all scripts in a directory and use them as commands. Probably dangerous
but usefull if you have loads of scripts :)

bind_to_address The address to bind to when listening to sockets.
port

The port to listen to

Default
5666

allowed_hosts

A list (comma separated) with hosts that are allowed to poll information from NRPE. This will replace the one
found under Setting for NRPE if present. If not present the same option found under Settings will be used. If
both are blank all hosts will be allowed to access the system

Default
Empty list (falls back to the one defined under [Settings]

use_ssl

Boolean value to toggle SSL (Secure Socket Layer) encryption on the socket connection. This corresponds to
the -n flag in check_nrpe

Values

Value Meaning
0 Don't use SSL
1 Use SSL encryption

Default
1 (enabled)

bind_to_address

The address to bind to when listening to sockets. If not specified the "first" (all?) one will be used (often the
correct one).

Values
IP address of any interface of the server.

Default
Empty (first (all?) interface will be used)

NRPE Section 23

command_timeout

The maximum time in seconds that a command can execute. (if more then this execution will be aborted).
NOTICE this only affects external commands not internal ones so internal commands may execute forever.

It is usually a good idea to set this to less then the timeout used with check_nrpe

Default
60

allow_arguments

A Boolean flag to determine if arguments are accepted on the incoming socket. If arguments are not accepted
you can still use external commands that need arguments but you have to define them in the NRPE handlers
below. This is similar to the NRPE "dont_blame_nrpe" option.

NOTICE That there are more then one place to set this!

Default
0 (means don't allow arguments)

Values

Value Meaning
0 Don't allow arguments
1 Allow arguments.
allow_nasty_meta_chars

Allow NRPE execution to have ?nasty? meta characters that might affect execution of external commands
(things like > ? etc).

Default
0 (means don't allow meta characters)

Values

Value Meaning
0 Don't allow meta characters
1 Allow meta characters
socket_timeout

The timeout when reading packets on incoming sockets. If the data has not arrived within this time we will
bail out. and discard the connection.

Default
30 seconds

script_dir

Load all scripts in a directory and use them as commands. Probably dangerous but useful if you have loads of
scripts :)

NRPE Section 24

Default
Empty (don't load any scripts)

performance_data

Send performance data back to Nagios (set this to 0 to remove all performance data)

Default
1

Values

Value Meaning
0 Don't send performance data
1 Send performance data
socket_back_log

Number of sockets to queue before starting to refuse new incoming connections. This can be used to tweak
the amount of simultaneous sockets that the server accepts. This is an advanced option and should not be used.

string_length

Length of payload to/from the NRPE agent. This is a hard specific value so you have to "configure" (read
recompile) your NRPE agent to use the same value for it to work.

Default
1024

NRPE Handlers Section

This is section is included from the following page NRPEListener/config/nrpe_handlers

Ovreview
Alias (builtin commands)1.
NRPE_NT Syntax2.

1. 1. 1. 1.

Ovreview

DEPRECATED This part of the module is deprecated and should not be used. Refer to the
[CheckExternalScripts] module instead. This module can add two types of command handlers.

First there are external command handlers that execute a separate program or script and simply return the
output and return status from that. The other possibility is to create an alias for an internal command.

To add an external command you add a command definition under the ?NRPE Handlers? section. A command
definition has the following syntax:

[NRPE Handlers]
command_name=/some/executable with some arguments
test_batch_file=c:\test.bat foo $ARG1$ bar
command[check_svc]=inject CheckService checkAll

NRPE Section 25

The above example will on an incoming ?test_batch_file? execute the c:\test.bat file and return the output as
text and the return code as the Nagios status.

Alias (builtin commands)

To add an internal command or alias is perhaps a better word. You add a command definition under the
?NRPE Handlers? section. A command definition with the following syntax:

command_name=inject some_other_command with some arguments
check_cpu=inject checkCPU warn=80 crit=90 5 10 15

The above example will on an incoming ?check_cpu? execute the internal command ?checkCPU? with
predefined arguments give in the command definition.

NRPE_NT Syntax

To leverage existing infrastructure you can copy your old definitions from NRPE_NT as-is. Thus the
following:

command[check_svc]=inject CheckService checkAll

translates into a command called check_svc with the following definition:

CheckServcice checkAll

File Logging Sections

Log Section

This is section is included from the following page FileLogger/config

Overview
debug1.
file2.
date_mask3.
root_folder4.

1. 1. 1. 1.

Overview

This section has options for how logging is performed with the [FileLogger] module. First off notice that for
logging to make sense you need to enable the ?FileLogger.dll? module that logs all log data to a text file in the
same directory as the NSClient++ binary if you don?t enable any logging module nothing will be logged.

The options you have available here are

Option Default Description

debug 0 A Boolean value that toggles if debug information should be logged or
not. This can be either 1 or 0.

file nsclient.log The file to write log data to. If no directory is used this is relative to the
NSClient++ binary.

NRPE Handlers Section 26

date_mask %Y-%m-%d
%H:%M:%S The date format used when logging to a file

root_folder exe Root folder if not absolute
debug

A Boolean value that toggles if debug information should be logged or not. This can be either 1 or 0.

Default
0

Values

Value Meaning
0 Don't log debug messages
1 Log debug messages
file

The file to write log data to. If no directory is used this is relative to the NSClient++ binary.

Default
nsclient.log

date_mask

The date format used when logging to a file

Default
%Y-%m-%d %H:%M:%S

root_folder

Root folder if not absolute

Default
exe

Values

local-app-data

The file system directory that contains application data for all users. A typical path is
C:\Documents and Settings\All Users\Application Data. This folder is used for application
data that is not user specific. For example, an application can store a spell-check dictionary, a
database of clip art, or a log file in the CSIDL_COMMON_APPDATA folder. This
information will not roam and is available to anyone using the computer.

exe Location of NSClient++ binary

NSClient Sections

NSClient Section

This is section is included from the following page NSClientListener/config

Ovreview1. 1. 1. 1.

Log Section 27

port1.
obfuscated_password2.
password3.
allowed_hosts4.
bind_to_address5.
socket_timeout6.
socket_back_log7.
version8.

Ovreview

This is the [NSClientListener] module configuration options.

Option Default
value Description

port 12489 The port to listen to
obfuscated_password An obfuscated version of password.
password The password that incoming client needs to authorize themselves by.

allowed_hosts A list (coma separated) with hosts that are allowed to connect to
NSClient++ via NSClient protocol.

socket_timeout 30 The timeout when reading packets on incoming sockets.
Advanced options:

Option Default value Description

socket_back_log

Number of sockets to queue before starting to refuse new incoming
connections. This can be used to tweak the amount of simultaneous
sockets that the server accepts. This is an advanced option and
should not be used.

bind_to_address
The address to bind to when listening to sockets, useful if you have
more then one NIC/IP address and want the agent to answer on a
specific one.

version auto
The version number to return for the CLIENTVERSION check
(useful to "simulate" an old/different version of the client, auto will
be generated from the compiled version string inside NSClient++

port

The port to listen to

Default
12489

obfuscated_password

An obfuscated version of password. For more details refer to the password option below.

Default
Empty string whjich means we will use the value from password instead.

NSClient Section 28

password

The password that incoming client needs to authorize themselves by. This option will replace the one found
under Settings for NSClient. If this is blank the option found under Settings will be used. If both are blank
everyone will be granted access.

Default
Empty string whjich means we will use the value from password in the [Settings] section instead.

allowed_hosts

A list (coma separated) with hosts that are allowed to poll information from NSClient++. This will replace the
one found under Setting for NSClient if present. If not present the same option found under Settings will be
used. If both are blank all hosts will be allowed to access the system.

BEWARE: NSClient++ will not resolve the IP address of DNS entries if the service is set to startup
automatically. Use an IP address instead or set cache_allowed_hosts=0 see above.

Default
Empty list (falls back to the one defined under [Settings]

bind_to_address

The address to bind to when listening to sockets. If not specified the "first" (all?) one will be used (often the
correct one).

Values
IP address of any interface of the server.

Default
Empty (first (all?) interface will be used)

socket_timeout

The timeout when reading packets on incoming sockets. If the data has not arrived within this time we will
bail out. and discard the connection.

Default
30 seconds

socket_back_log

Number of sockets to queue before starting to refuse new incoming connections. This can be used to tweak
the amount of simultaneous sockets that the server accepts. This is an advanced option and should not be used.

version

The version number to return for the CLIENTVERSION check (useful to "simulate" an old/different version
of the client, auto will be generated from the compiled version string inside NSClient++

Values:

NSClient Section 29

If given any str4ing will be returned unless auto in which case the proper
version will be returned

Default
auto

Check System Sections

CheckSystem Section

This is section is included from the following page CheckSystem/config

Overview
CPUBufferSize1.
CheckResolution?2.
auto_detect_pdh3.
dont_use_pdh_index4.
force_language5.
ProcessEnumerationMethod?6.
check_all_services[<key>]7.
MemoryCommitLimit?8.
MemoryCommitByte?9.
SystemSystemUpTime?10.
SystemTotalProcessorTime?11.
debug_skip_data_collection12.

1. 1. 1. 1.

Overview

The configuration for the CheckSystsem? module should in most cases be automagically detected on most
versions of windows (if you have a problem with this let me know so I can update it). Thus you no longer
need to configure the advanced options. There is also some other tweaks that can be configured such as check
resolution and buffer size.

Option Default value Description
CPUBufferSize 1h The time to store CPU load data.
CheckResolution? 10 Time between checks in 1/10 of seconds.
Advanced options:

Option Default value Description

auto_detect_pdh 1 Set this to 0 to disable auto detect (counters.defs)
PDH language and OS version.

dont_use_pdh_index 0 Set this to 1 if you dont want to use indexes for
finding PDH counters.

force_language Set this to a locale ID if you want to force
auto-detection of counters from that locale.

ProcessEnumerationMethod? auto Set the method to use when enumerating
processes PSAPI, TOOLHELP or auto

check_all_services[<key>] ignored

Check System Sections 30

Set how to handle services set to <key> state
when checking all services

MemoryCommitLimit? \Memory\Commit Limit Counter to use to check upper memory limit.
MemoryCommitByte? \Memory\Committed Bytes Counter to use to check current memory usage.
SystemSystemUpTime? \System\System Up Time Counter to use to check the uptime of the system.

SystemTotalProcessorTime? \Processor(_total)\%
Processor Time Counter to use for CPU load.

debug_skip_data_collection 0 DEBUG Used to disable collection of data
CPUBufferSize

The time to store CPU load data. The larger the buffer the more memory is used. This is a time value which
takes an optional suffix for which time denominator to use:

Suffix Meaning
s second
m minutes
h hour
d day

Default
1h

CheckResolution?

Time between checks in 1/10 of seconds.

Default
10

auto_detect_pdh

Set this to 0 to disable auto detect (counters.defs) PDH language and OS version.

Values

Value Meaning
0 Don't attempt automagically detect the counter names used.
1 Use various menthods to figure out which counters to use.

Default
1

dont_use_pdh_index

When autodetecting counter names do NOT use index to figure out the values.

Values

CheckSystem Section 31

Value Meaning
0 Use indexes to automagically detect the counter names used.
1 Do NOT use indexes to figure out which counters to use.

Default
0

force_language

When index detection fails your local is used. Here you can override the default local to force another one if
the detected local is incorrect.

Values
Any locale string like SE_sv (not sure here haven't used in years)

Deafult
Empty string which means the system local will be used.

ProcessEnumerationMethod?

DEPRECATED Set the method to use when enumerating processes PSAPI, TOOLHELP or auto No longer
used (only PSAPI is supported).

check_all_services[<key>]

When using check all in a service check the default behaviour is that service set to auto-start should be started
and services set to disabled should be stopped. This can be overridden using this option. Keys avalible:

Key Default Meaning
SERVICE_BOOT_START ignored TODO
SERVICE_SYSTEM_START ignored TODO
SERVICE_AUTO_START started TODO
SERVICE_DEMAND_START ignored TODO
SERVICE_DISABLED stopped TODO
MemoryCommitLimit?

Counter to use to check upper memory limit.

Default
\Memory\Commit Limit

MemoryCommitByte?

Counter to use to check current memory usage.

Default
\Memory\Committed Bytes

CheckSystem Section 32

SystemSystemUpTime?

Counter to use to check the uptime of the system.

Default
\System\System Up Time

SystemTotalProcessorTime?

Counter to use for CPU load.

Default
\Processor(_total)\% Processor Time

debug_skip_data_collection

DEBUG Used to disable collection of data

Default
0

External Script Sections

External Script Section

This is a wrapper page the actual data is on the following page CheckExternalScripts/config/external_script

Overview
command_timeout1.
allow_arguments2.
allow_nasty_meta_chars3.
script_dir4.

1. 1. 1. 1.

Overview

Configure how the External Scripts module works (not to be confused with the "External Scripts" section
below that holds scripts that can be run.

Option Default
value Description

command_timeout 60 The maximum time in seconds that a command can execute.

allow_arguments 0 A Boolean flag to determine if arguments are accepted on the command
line.

allow_nasty_meta_chars 0 Allow NRPE execution to have ?nasty? meta characters that might
affect execution of external commands.

script_dir When set all files in this directory will be available as scripts.
WARNING

CheckSystem Section 33

command_timeout

The maximum time in seconds that a command can execute. (if more then this execution will be aborted).
NOTICE this only affects external commands not internal ones.

Values:

Any number (positive integer) representing time in seconds.

Default
60 (seconds).

Example
Set timeout to 120 seconds

[External Script]
command_timeout=120

allow_arguments

A Boolean flag to determine if arguments are accepted on the incoming socket. If arguments are not accepted
you can still use external commands that need arguments but you have to define them in the NRPE handlers
below. This is similar to the NRPE "dont_blame_nrpe" option.

Values

Value Meaning
0 Disallow arguments for commands
1 Allow arguments for commands

Default
0 (false).

Example
Allow arguments

[External Script]
allow_arguments=1

allow_nasty_meta_chars

Allow NRPE execution to have ?nasty? meta characters that might affect execution of external commands
(things like > ? etc).

Values
This list contain all possible values

Value Meaning
0 Disallow nasty arguments for commands
1 Allow nasty arguments for commands

Default

External Script Section 34

0 (false)
Example

Allow nasty arguments

[External Script]
allow_nasty_meta_chars=1

script_dir

When set all files in this directory will be available as scripts. This is pretty dangerous but can be a bit useful
if you use many scripts and you are sure no one else can add files there.

Value
Any directory (can be relative to NSClient++)

Default
Empty (meaning no scripts are added)

Example
All scripts ending with bat in the scripts folder (of NSClient++ installation directory) will be added as
scripts.

[External Script]
script_dir=.\scripts*.bat

External Scripts Section

This is a wrapper page the actual data is on the following page CheckExternalScripts/config/external_scripts

Overview1. 1. 1. 1.

Overview

A list of scripts and their aliases available to run from the CheckExternalScripts module. Syntax is:
<command>=<script> <arguments> for instance:

check_es_long=scripts\long.bat
check_es_ok=scripts\ok.bat
check_es_nok=scripts\nok.bat
check_vbs_sample=cscript.exe //T:30 //NoLogo scripts\check_vb.vbs
check_es_args=scripts\args.bat static $ARG1$ foo

To configure scripts that request arguments, use the following syntax:

check_script_with_arguments=scripts\script_with_arguments.bat $ARG1$ $ARG2$ $ARG3$

Use ./check_nrpe ... -c check_script_with_arguments -a arg1 arg2 arg3 ... Make sure you type $ARG1$ and
not $arg1$ (case sensitive)

NOTICE For the above to work you need to enable allow_arguments in both NRPEListener and
CheckExternalScripts!

External Script Section 35

External Alias Section

This is a wrapper page the actual data is on the following page CheckExternalScripts/config/external_alias

Overview1. 1. 1. 1.

Overview

A simple and nifty way to define aliases in NSClient++. Aliases are good for defining commands locally or
just to simply the nagios configuration. There is a series of "useful" aliases defined in the included
configuration file which is a good place to start. An alias is an internal command that has been "wrapped" (to
add arguments). If you want to create an alias for an external command you can do so but it still needs the
normal defnition and the alias will use the internal alias of the external command.

WARNING Be careful so you don't create loops (ie check_loop=check_a, check_a=check_loop)

[External Aliases]
alias_cpu=checkCPU warn=80 crit=90 time=5m time=1m time=30s
alias_disk=CheckDriveSize MinWarn=10% MinCrit=5% CheckAll FilterType=FIXED
alias_service=checkServiceState CheckAll
alias_mem=checkMem MaxWarn=80% MaxCrit=90% ShowAll type=physical

Event Log Sections

Event Log Section

This is section is included from the following page CheckEventLog/config

EventLog?

The [EventLog?] section is used by the CheckEventLog module.

Advanced options:

Option Default Description

debug 0
Log all "hits" and "misses" on the eventlog filter chain, useful for debugging eventlog
checks but very very very noisy so you don't want to accidentally set this on a real
machine.

buffer_size 65536 Sets the buffer memory size used by NSClient++ when processing event log check
commands. For details see below.

debug

Used to log all information regarding hits and misses on the filtering,. This has sever performance impact as
well as log file will grow so do not use unless you are debugging.

[EventLog]
debug=1

External Alias Section 36

buffer_size

This option was added in version 3.4

This parameter is set in the nsc.ini file and needs to be put under a heading of [EventLog?] (this heading may
need to be created). The buffer reserves memory each time an eventlog check is being run when so set the size
accordingly (or you will be wasting lots of memory).

To change the default setting of 64KB add (or edit) in the nsc.ini file an entry for buffer size
(buffer_size=512000) where the value is in bytes. Often times the buffer size will need to be increased when
using the %message% variable in return results. Most often you only need to increase this if you get error
reported in the log file from NSClient++

[EventLog]
buffer_size=512000

Complete configuration

This are the default values for the entire EventLog? section

[EventLog]
debug=0
buffer_size=64000

NSCA Agent Sections

This page describes the configuration options for the NSCA module.

NSCA Agent Section

This is a wrapper page the actual data is on the following page NSCAAgent/config/NSCA_Agent

Ovreview
interval1.
nsca_host2.
nsca_port3.
encryption_method4.
password5.
hostname6.
debug_threads7.

1. 1. 1. 1.

Ovreview

Options to configure the NSCA module.

Option Default
value Description

interval 60 Time in seconds between each report back to the server (cant as of yet be set
individually so this is for all "checks")

nsca_host ... The NSCA/Nagios(?) server to report results to.

EventLog? 37

nsca_port 5667 The NSCA server port

encryption_method 1 Number corresponding to the various encryption algorithms (see below). Has
to be the same as the server or it wont work at all.

password The password to use. Again has to be the same as the server or it won't work
at all.

Advanced options:

Option Default value Description

hostname The host name of this host if set to blank (default) the windows name of
the computer will be used.

debug_threads 1 DEBUGNumber of threads to run, no reason to change this really (unless
you want to stress test something)

interval

Time in seconds between each report back to the server (cant as of yet be set individually so this is for all
"checks")

Value
Any positive integer (time in seconds)

Default
60 (seconds)

nsca_host

The NSCA/Nagios(?) server to report results to.

Values
Hostname or IP address to submit back results to.

Default
Empty string (will in 3.7 and above mean don't submit results)

nsca_port

The NSCA server port

Values
Any positive integer (port number ought to be less then 65534)

Default
5667

encryption_method

Number corresponding to the various encryption algorithms (see below). Has to be the same as the server or it
wont work at all.

Values

Supported encryption methods:

Algorithm

NSCA Agent Section 38

0 None (Do NOT use this option)
1 Simple XOR (No security, just obfuscation, but very fast)
2 DES
3 3DES (Triple DES)
4 CAST-128
6 xTEA
8 BLOWFISH
9 TWOFISH
11 RC2
14 RIJNDAEL-128 (AES)
20 SERPENT

Default
1 (I am note sure I thought default was 14?)

password

The password to use. Again has to be the same as the server or it won't work at all.

Values
Any string (should be the same as the one configured in nsca.conf

hostname

The host name of this host if set to blank (default) the windows name of the computer will be used.

Values
Any string (or auto)

Default
auto (means windows hostname will be used)

debug_threads

DEBUGNumber of threads to run, no reason to change this really (unless you want to stress test something)

Values
Any positive integer larger then or equal to 1

Default
1

NSCA Commands Section

This is a wrapper page the actual data is on the following page NSCAAgent/config/NSCA_Commands

Overview1. 1. 1. 1.

NSCA Agent Section 39

Overview

A list of commands to run and submit each time we report back to the NSCA server. A command starting with
host_ will be submitted as a host command. For an example see below: This will report back one service
check (called my_cpu_check) and one host check (host checks have no service name).

[NSCA Commands]
my_cpu_check=checkCPU warn=80 crit=90 time=20m time=10s time=4
host_check=check_ok

LUA Scripts

A list of LUA script to load at startup. In difference to "external checks" all LUA scripts are loaded at startup.
Names have no meaning since the script (on boot) submit which commands are available and tie that to
various functions.

[LUA Scripts]
scripts\test.lua

NSCA Commands Section 40

Problems

1. I am having problems where do I start?

NSCP has a built-in "test and debug" mode that you can activate with the following command

nsclient++ /test

What this does is two things.

it starts the deamon as "usual" with the same configuration and such.1.
it enables debug logging and logs to the console.2.

This makes it quite easy to see what is going on and why things go wrong. .

2. Failed to open performance counters

The first thing to check is the version if you are using an old version (pre 0.3.x) upgrade!•
Second thing to check are your performance counters working? Sometimes the performance counters
end up broken end need to be rebuilt See forum post: here for details or Microsoft KB:
http://support.microsoft.com/kb/300956 essentially you need to use the "lodctr /R" command.

•

3. Bind failed

Usually this is due to running more then once instance of NSClient++ or possibly running another
program that uses the same port.

Make sure you don't have any other instance NSCLient++ started.♦
Check if the port is in use (netstat -a look for LISTENING)♦

•

4. "EvenlogBuffer?? is too small

This is because you have one or more entries in your eventlog which are larger then the "default
buffer size of 64k". The best way to fix this is to increase the buffer used.

[EventLog]
buffer_size=128000

•

NOTE: You should add it to the ini file by yourself.

There are hundreds of options not in the ini file (all covered in the docs though). The default ini is more a
"common ones" and not a complete set.

the ini file that comes with the installation does not contain this variable by default.

5. How do I properly escape spaces in strings

When you need to put spaces in a string you do the following:

Problems 41

http://support.microsoft.com/kb/300956

nagios:
As usual you can do it anyway you like but I prefer: check_nrpe ... 'this is a string'♦

•

NSClient++ (inject, alias, external, etc...)
The parser is badly written so the only option is:

CHeckSomething "this is a string"
CheckEventLog "filter-message=substr:Hello World"

♦

Not for instance:

filter-message="substr:Hello World"
filter-message=substr:"Hello World"

♦

•

6. How do I properly escape $ in strings

From:

nagios:
$$ (you use two $ signs)♦

•

from NSClient++
$ (you do not need to escape them at all)♦

•

7. System Tray does not work

Older WIndows

If you are using "older windows" (ie. XP and below) you can use the "old" sytray module like so:

[modules]
SysTray.dll

and then run:

NSClient++ -noboot SysTray install

"modern" windows

If you are using "modern" windows ie. vista, 2k3, 2k8, etc etc there is no "session 0" (or there is but you do
not see it by default) so they sytray (which ends up on session 0) wont be visible by your session 1 (or above).
Thus I started work on a new "modern implementation" this comes in the form of a shared session (based on
shared memory and mutexes). But since this is rather new it is very experimental so use it with care! To
enable shared session do the following:

[modules]
; SysTray.dll <--- NOTICE THE COMMENT

[Settings]
shared_session=1

5. How do I properly escape spaces in strings 42

Modules
NSClient++ comes with a few modules out of the box that perform various checks. A list of the modules and
their potential use is listed below. Click each plug-in to see detailed command descriptions and how the
various modules can be used.

CheckDisk

Module to do various disk related checks.

CheckFileSize, Check the size of a file•
CheckDriveSize, Check the size of a fixed drive or mounted volume•
CheckFile, Check various aspects on one or more files or directories.•

CheckEventLog

Module to check event log

CheckEventLog, Check event log for errors•

CheckSystem

Module to check system related things

CheckCPU, Check CPU load averages•
CheckUpTime, Check system uptime•
CheckServiceState, Check State of a service•
CheckProcState, Check state of a process (application)•
CheckMem, Check state of memory (Page file)•
CheckCounter, Check performance counters•

CheckHelpers

Various helper function, doesn't check anything in it self but can help make things simpler.

CheckAlwaysOK, Runs another check and always returns OK regardless of result.•
CheckAlwaysCRITICAL, Runs another check and always returns CRITICAL regardless of result.•
CheckAlwaysWARNING, Runs another check and always returns WARNING regardless of result.•
CheckMultiple, Runs multiple checks and returns them all in one go.•
CheckOK, Always returns OK (useful for NSCA)•
CheckCRITICAL, Always returns CRITICAL (useful for NSCA)•
CheckWARNING, Always returns WARNING (useful for NSCA)•
CheckVersion, Returns the version of NSClient++•

FileLogger

Logs all messages (errors, warnings etc) to a file.

Modules 43

NRPEListener

Listens for incoming NRPE calls and handles them by injecting them into the core. It also listens for all NRPE
definitions and executes them

NSClientListener

Listens for incoming NSClient calls and handles them accordingly. This only allows a limited subset of
functionality and NRPE is recommended.

SysTray

A simple module to show an icon in the tray when the service is running this module does not export any
check commands.

CheckWMI

CheckWMI, Check large resultsets from (for instance are there more then 5-rows matching criteria X,
ie. more than 5 internet explorer processes which uses more than 123Mb memory).

•

CheckWMIValue, Check the result of a query (ie. are the current memory utilization over X)•

CheckTaskSched

CheckTaskSched, Check if scheduled tasks are working/scheduled/*.•

CheckExternalScripts

User defined check commands, allows writing check scripts in external languages (VB, batch, EXE, *).

LUAScript

User defined check commands, allows writing check scripts (and wrap others in) the Lua scripting language.

NSCAAgent

No check commands, has functions to send results from check_commands to a NSCA server.

RemoteConfiguration

DEPRECATED No check commands, has functions to manage the configuration remotely.

NRPEListener 44

All Commands
A list of all commands (alphabetically).

CheckAlwaysCRITICAL (check)•
CheckAlwaysOK (check)•
CheckAlwaysWARNING (check)•
CheckCPU (check)•
CheckCRITICAL (check)•
CheckCounter (check)•
CheckEventLog/CheckEventLog (check)•
CheckFile (check)•
CheckFileSize (check)•
CheckMem (check)•
CheckMultiple (check)•
CheckOK (check)•
CheckProcState (check)•
CheckServiceState (check)•
CheckTaskSched/CheckTaskSched (check)•
CheckUpTime (check)•
CheckVersion (check)•
CheckWARNING (check)•
CheckWMI/CheckWMI (check)•
CheckWMIValue (check)•

All Commands 45

CheckDisk.dll
The CheckDisk module has various disk and file related checks. You can either check disk drive and volume
sizes as well as files and directories.

CheckFileSize, Check the size of one or more files or directories.•
CheckDriveSize, Check the size of one or more Drives•
CheckFile, DEPRECATED Check various aspects on one or more files or directories.•
CheckFile2, Check various aspects on (one or) more files or directories.•

Configuration Sections

This is a wrapper page the actual data is on the following page CheckDisk/config

This module has no configuration.

CheckDisk.dll 46

Configuration for the CheckDisk
This page describes the configuration options for the CheckDisk module.

This is a wrapper page the actual data is on the following page CheckDisk/config

Configuration Sections

This module has no configuration.

Configuration for the CheckDisk 47

CheckFileSize
CheckFileSize is part of the wiki:CheckDisk module

This check does a recursive size calculation of the directory (or file) specified. A request has one or more
options described in the table below. The order only matter in that the size has to be specified before the File
option this because you can change the size for each drive by specifying multiple Size options.

Option Values Description

MaxWarn size-value The maximum size the directory is allowed before a warning state is
returned.

MaxCrit size-value The maximum size the directory is allowed before a critical state is
returned.

MinWarn size-value The minimum size the directory is allowed before a warning state is
returned.

MinCrit size-value The minimum size the directory is allowed before a critical state is returned.

ShowAll None
A Boolean flag to show size of directories that are not in an alarm state. If
this is not specified only drives with an alarm state will be listed in the
resulting string.

File File or
directory name

The name of the file or directory that should have its size calculated. Notice
that large directory structures will take a long time to check.

File:<alias> File or
directory name Same as the file option but using a short alias in the returned data.

debug A boolean flag to set debug to true (0.3.8)
ignore-perf-data A boolean flag to disable returning performance data
The size-value is a normal numeric-value with a unit postfix. The available postfixes are B for Byte, K for
Kilobyte, M for Megabyte and finally G for Gigabyte.

Examples

Check the size of the windows directory

Check the size of the windows directory and make sure it stays below 1 gigabyte. Sample Command:

CheckFileSize ShowAll MaxWarn=1024M MaxCrit=4096M File:_WIN=c:\WINDOWS*.*

WARNING: WIN: 2G (2325339822B)

Nagios Configuration:

define command {
 command_name <<CheckFileSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFileSize -a ShowAll MaxWarn=$ARG1$ MaxCrit=$ARG2$ File:$ARG3$=$ARG4$
}
<<CheckFileSize>> 1024M!4096M!_WIN!c:\WINDOWS*.*

From Commandline (with NRPE):

CheckFileSize 48

check_nrpe -H IP -p 5666 -c CheckFileSize -a ShowAll MaxWarn=1024M MaxCrit=4096M File:_WIN=c:\WINDOWS*.*

Check the size of the pagefile.sys

Check the size of the pagefile.sys and make sure it stays above 1 gigabyte. Sample Command:

CheckFileSize ShowAll MinWarn=1G MinCrit=512M File=c:\pagefile.sys

OK: c:\pagefile.sys: 1G (1610612736B)

Nagios Configuration:

define command {
 command_name <<CheckFileSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFileSize -a ShowAll MinWarn=$ARG2$ MinCrit=$ARG1$ File=c:\pagefile.sys
}
<<CheckFileSize>> 512M!1G

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFileSize -a ShowAll MinWarn=1G MinCrit=512M File=c:\pagefile.sys

Multiple files

Sample of using individual size for multiple files. Sample Command:

CheckFileSize MaxWarn=2G MaxCrit=4G File=c:\\pagefile.sys MaxWarn=1K MaxCrit=512 File=c:\\boot.ini

OK: all file sizes are within bounds.

Nagios Configuration:

define command {
 command_name <<CheckFileSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFileSize -a MaxWarn=2G MaxCrit=4G File=c:\\pagefile.sys MaxWarn=1K MaxCrit=512 File=c:\\boot.ini
}
<<CheckFileSize>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFileSize -a MaxWarn=2G MaxCrit=4G File=c:\\pagefile.sys MaxWarn=1K MaxCrit=512 File=c:\\boot.ini

Single file

I have had to set this up like this for our Windows Server. Sample Command:

CheckFileSize MaxWarn=2G MaxCrit=4G File=c:\\pagefile.sys MaxWarn=1K MaxCrit=512 File=c:\\boot.ini

OK: all file sizes are within bounds.

Nagios Configuration:

define command {
 command_name <<CheckFileSize>>

Check the size of the windows directory 49

 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFileSize -a MaxWarn=2G MaxCrit=4G File=c:\\pagefile.sys MaxWarn=1K MaxCrit=512 File=c:\\boot.ini
}
<<CheckFileSize>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFileSize -a MaxWarn=2G MaxCrit=4G File=c:\\pagefile.sys MaxWarn=1K MaxCrit=512 File=c:\\boot.ini

Some exchange database thing

Sample Command:

CheckFileSize MaxWarn=13G MaxCrit=15.5G File=d:\\exchsrvr\\mdbdata\\priv1.edb

OK: all file sizes are within bounds.

Nagios Configuration:

define command {
 command_name <<CheckFileSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFileSize -a MaxWarn=$ARG1$ MaxCrit=$ARG2$ File=$ARG3$
}
<<CheckFileSize>> 13G!15.5G!d:\\exchsrvr\\mdbdata\\priv1.edb

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFileSize -a MaxWarn=13G MaxCrit=15.5G File=d:\\exchsrvr\\mdbdata\\priv1.edb

Single file 50

CheckDriveSize
CheckDriveSize is part of the CheckDisk module

This check verifies the size of various drives specified on the command line. A request has one or more
options described in the table below. The order only matters in that the size has to be specified before the
Drive option because you can change the size for each drive by specifying multiple Size options.

Option Values Description
MaxWarnFree size-value or % The maximum allowed free space for the drive(s).
MaxCritFree size-value or % The maximum allowed free space for the drive(s).
MinWarnFree size-value or % The minimum allowed free space for the drive(s).
MinCritFree size-value or % The minimum allowed free space for the drive(s).
MaxWarnUsed size-value or % The maximum allowed used space for the drive(s).
MaxCritUsed size-value or % The maximum allowed used space for the drive(s).
MinWarnUsed size-value or % The minimum allowed used space for the drive(s).
MinCritUsed size-value or % The minimum allowed used space for the drive(s).

ShowAll Empty, long If present will display information even if an item is not
reporting a state. If set to long will display more information.

Drive A Drive letter or the path of a
mounted Volume The letter of the drive to check.

FilterType FIXED, CDROM,
REMOVABLE, REMOTE

Filter for drive type to prevent checking drives of certain
kinds (most useful when using CheckAll?). The default is
FIXED

CheckAll None,volumes Check all available drives. Volume support is available since
(0.3.8)

CheckAllOthers None Check all drives (matching Filters) except those specified in
the Drive= clause.

ignore-perf-data A boolean flag to disable returning performance data
The size-value or % is a normal numeric-value with an optional unit or percentage postfix to specify large
sizes. The available postfixes are B for Byte, K for Kilobyte, M for Megabyte, G for Gigabyte and finally %
for percent free space.

Examples

Check C:

Check the size of C:\ and make sure it has 10% free space:

Sample Command:

CheckDriveSize ShowAll MinWarnFree=10% MinCritFree=5% Drive=c:\

CRITICAL: C:: Total: 74.5G - Used: 71.2G (95%) - Free: 3.28G (5%) <critical

Nagios Configuration:

CheckDriveSize 51

define command {
 command_name <<CheckDriveSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckDriveSize -a ShowAll MinWarnFree=$ARG2$ MinCritFree=5% Drive=c:\
}
<<CheckDriveSize>> c:,5%!10%

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckDriveSize -a ShowAll MinWarnFree=10% MinCritFree=5% Drive=c:\

Volumes

To check the size of mounted volume c:\volumne_test and make sure it has 1M free space

Sample Command:

CheckDriveSize ShowAll MaxWarn=1M MaxCrit=2M Drive=c:\volumne_test

CRITICAL: C:: Total: 74.5G - Used: 71.2G (95%) - Free: 3.28G (5%) <critical

Nagios Configuration:

define command {
 command_name <<CheckDriveSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckDriveSize -a ShowAll MaxWarn=$ARG2$ MaxCrit=$ARG3$ Drive=$ARG1$
}
<<CheckDriveSize>> c:\volumne_test!1M!2M

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckDriveSize -a ShowAll MaxWarn=1M MaxCrit=2M Drive=c:\volumne_test

Volumes

To check the size of all volume has 1M free space

Sample Command:

CheckDriveSize ShowAll MaxWarn=1M MaxCrit=2M CheckAll=volumes

CRITICAL: C:: Total: 74.5G - Used: 71.2G (95%) - Free: 3.28G (5%) <critical

Nagios Configuration:

define command {
 command_name <<CheckDriveSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckDriveSize -a ShowAll MaxWarn=$ARG2$ MaxCrit=$ARG3$ CheckAll=volumes
}
<<CheckDriveSize>> c:\volumne_test!1M!2M

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckDriveSize -a ShowAll MaxWarn=1M MaxCrit=2M CheckAll=volumes

Check C: 52

All fixed and network disks

To check the size of all fixed and network drives and make sure they have at least 1gig free space

Sample Command:

CheckDriveSize MinWarn=50% MinCrit=25% CheckAll FilterType=FIXED FilterType=REMOTE

CRITICAL: C:\;76514398208;1073741824;536870912; D:\;199303897088;1073741824;536870912; X:\;35467034624;1073741824;536870912; Y:\;299649466368;1073741824;536870912;

Nagios Configuration:

define command {
 command_name <<CheckDriveSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckDriveSize -a MinWarn=$ARG2$ MinCrit=$ARG1$ CheckAll FilterType=FIXED FilterType=REMOTE
}
<<CheckDriveSize>> 25%!50%

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckDriveSize -a MinWarn=50% MinCrit=25% CheckAll FilterType=FIXED FilterType=REMOTE

Fixed and Network (ignore some)

Check all fixed and network drives but ignore C and F. Not sure about this (should be simpler ways)

Sample Command:

CheckDriveSize CheckAllOthers FilterType=FIXED FilterType=REMOTE MinWarn=25% MinCrit=50% Drive=C Drive=F

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckDriveSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckDriveSize -a CheckAllOthers FilterType=FIXED FilterType=REMOTE MinWarn=$ARG1$ MinCrit=$ARG2$ Drive=C Drive=F
}
<<CheckDriveSize>> 25%!50%

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckDriveSize -a CheckAllOthers FilterType=FIXED FilterType=REMOTE MinWarn=25% MinCrit=50% Drive=C Drive=F

Checking UNC Paths

Important to not forget the trailing \.

Sample Command:

CheckDriveSize Drive=x:\ FilterType=REMOTE ShowAll MaxWarnUsed=90% MaxCritUsed=95%

OK: ...

All fixed and network disks 53

Nagios Configuration:

define command {
 command_name <<CheckDriveSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckDriveSize -a Drive=x:\ FilterType=REMOTE ShowAll MaxWarnUsed=90% MaxCritUsed=$ARG2$
}
<<CheckDriveSize>> x:,90%!95%

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckDriveSize -a Drive=x:\ FilterType=REMOTE ShowAll MaxWarnUsed=90% MaxCritUsed=95%

Simple Config

Another example for a working config.

Sample Command:

CheckDriveSize Drive=c:\\volumes\\somevolume\\ ShowAll MaxWarnUsed=90% MaxCritUsed=95%

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckDriveSize>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckDriveSize -a Drive=c:\\volumes\\somevolume\\ ShowAll MaxWarnUsed=90% MaxCritUsed=$ARG2$
}
<<CheckDriveSize>> c:\\volumes\\somevolume\,90%!95%

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckDriveSize -a Drive=c:\\volumes\\somevolume\\ ShowAll MaxWarnUsed=90% MaxCritUsed=95%

Checking UNC Paths 54

CheckFile
A new command to check a bunch of files.

DEPRECATED (use CheckFile2 instead).

FOr details (if you want to use anyway) refer to the deprecated page.

CheckFile 55

CheckFile2
A command to check aspects on several files it can be used to check one file but that is not the goal. The core
scenario is: "do I have more then x files matching this criteria?" but it is flexible enough to be applicable in
many other scenarios as well.

The main concept is much like the eventlog checks where you have a data-set which you want to "filter" and
then check the resulting number of lines against a criteria.

Option Values Description
truncate Truncate return data (not performance data)
ignore-perf-data A boolean flag to disable returning performance data

syntax %filename%
The syntax of how each file is presented, can include the following tokens:
%path%, %filename%, %creation%, %access%, %write%, %size%,
%version%, %line-count%

master-syntax %list% The syntax for the returned message %list% (the list of syntax strings),
%matches% (number of matched files), %files% (number of files total)

path The path to check from (root)
pattern The file pattern to check
alias Alias for the check
file Deprecated (will be split into path and pattern)
debug Boolean flag to enable debugging
ignore-errors Boolean flag to ignore any errors
max-dir-depth Recursion depth
filter in,out,all,any Filter mode (see below)
The CheckFile2 command Uses filters to define the "interesting" files.

Syntax

A filter is made up of three things:

Filter mode Determines what happens when the filter is matched.•
Filter type What the filter will match (ie. which field).•
An Expression What to check for.•

The syntax of a filter is: filter<mode><type>=<expression>

Order

Order is important, as soon as a positive (+) or negative (-) rule is matched it is either discarded or included
and the entry is "finished" and it will continue with the next entry. The best way here is to have an "idea"
either remove all entries first or include all required ones first (depending on what you want to do). You can
mix and such but this will probably complicate things for you unless you actually need to.

CheckFile2 56

Filter modes

Capturing files (or discarding them) are done with filters. There are three kinds of filters.

<filter mode> title description
+ positive requirements All these filters must match or the row is discarded.
. potential matches If this matches the line is included (unless another lines overrides).
- negative requirements None of these filters can match (if any do the row is discarded).
Thus if you want to have: all files from the last month but not the ones smaller then 5kbI would break this
down as such: (notice there are other options). - date=older than 2 months + size=larget then 5k This would
discard all files older then 2 month and then include all files larger then 5kb.

Filter Types

<filter type> Values Description
size number The size of the file
creation [[time expression]] The date/time the file was created
written [[time expression]] The date/time the file was last updated
accessed [[time expression]] The date/time the file was last accessed
version [[string expression]] The exe file version
line-count number Number of lines (in a text file)

time expression

A time expression is a date/time interval as a number prefixed by a filter prefix (<, >, =, <>) and followed by
a unit postfix (m, s, h, d, w). A few examples of time expression are: filter+generated=>2d means filter will
match any records older than 2 days, filter+generated=<2h means match any records newer then 2 hours.
Warning, the bash interprets the "<,>,!". Use the "\" to avoid this. e.g. filter+generated=\>2d . On the Client
activate the "Nasty Metachars" Option, to allow the \.

string expression

A string expression is a key followed by a string that specifies a string expression. Currently substr and
regexp are supported. Thus you enter filter.message=regexp:(foo|bar) to enter a regular expression and
filter-message=substr:foo to enter a substring patter match.

Filter in/out

There are two basic ways to filter:

in When you filter in it means all records matching your filter will be returned (the "simplest way")•
out When you filter out it means all records matching your filter will be discarded.•

So:

filter=in filter+size==5k
...
filter=out filter-size=ne:5k

Filter modes 57

Will both have the same effect as the first one filters "in" and matches all siles with 5kb and the second one
filters out and discards all files not 5kb.

Sample Command:

CheckFile2 path=c:\test pattern=*.txt MaxCrit=1 filter+written=gt:2h

ok: CheckFile ok

Nagios Configuration:

define command {
 command_name <<CheckFile2>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFile2 -a path=$ARG1$ pattern=*.txt MaxCrit=1 filter+written=gt:$ARG2$
}
<<CheckFile2>> c:\test!2h

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFile2 -a path=c:\test pattern=*.txt MaxCrit=1 filter+written=gt:2h

Some more Examples (for 0.3.8)

Sample Command:

CheckFile2 path=D:\tmp pattern=*.exe filter+version=!=1.0 "syntax=%filename%: %version%" MaxWarn=1

warning: WARNING:explorer.exe: 6.0.2900.5512

Nagios Configuration:

define command {
 command_name <<CheckFile2>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.exe filter+version=!=1.0 "syntax=%filename%: %version%" MaxWarn=1
}
<<CheckFile2>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.exe filter+version=!=1.0 "syntax=%filename%: %version%" MaxWarn=1

Sample Command:

CheckFile2 path=D:\tmp pattern=*.exe filter+version=!=6.0.2900.5512 "syntax=%filename%: %version%" MaxWarn=1

ok

Nagios Configuration:

define command {
 command_name <<CheckFile2>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.exe filter+version=!=6.0.2900.5512 "syntax=%filename%: %version%" MaxWarn=1
}
<<CheckFile2>>

Filter in/out 58

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.exe filter+version=!=6.0.2900.5512 "syntax=%filename%: %version%" MaxWarn=1

Sample Command:

CheckFile2 path=D:\tmp pattern=*.txt filter+line-count=!=2 "syntax=%filename%: %line-count%" MaxWarn=1

warning: WARNING:test.txt: 3

Nagios Configuration:

define command {
 command_name <<CheckFile2>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.txt filter+line-count=!=2 "syntax=%filename%: %line-count%" MaxWarn=1
}
<<CheckFile2>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.txt filter+line-count=!=2 "syntax=%filename%: %line-count%" MaxWarn=1

Sample Command:

CheckFile2 path=D:\tmp pattern=*.txt filter+line-count=ne:3 "syntax=%filename%: %line-count%" MaxWarn=1

ok

Nagios Configuration:

define command {
 command_name <<CheckFile2>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.txt filter+line-count=ne:3 "syntax=%filename%: %line-count%" MaxWarn=1
}
<<CheckFile2>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.txt filter+line-count=ne:3 "syntax=%filename%: %line-count%" MaxWarn=1

Sample Command:

CheckFile2 path=D:\tmp pattern=*.txt filter+size=gt:20 "syntax=%filename%: %size%" MaxWarn=1

warning: WARNING:test.txt: 26B

Nagios Configuration:

define command {
 command_name <<CheckFile2>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.txt filter+size=gt:20 "syntax=%filename%: %size%" MaxWarn=1
}
<<CheckFile2>>

From Commandline (with NRPE):

Some more Examples (for 0.3.8) 59

check_nrpe -H IP -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.txt filter+size=gt:20 "syntax=%filename%: %size%" MaxWarn=1

Sample Command:

CheckFile2 path=D:\tmp\empty pattern=*.tx filter+size=gt:20 "syntax=%filename%: %size%" MaxWarn=1

ok

Nagios Configuration:

define command {
 command_name <<CheckFile2>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFile2 -a path=D:\tmp\empty pattern=*.tx filter+size=gt:20 "syntax=%filename%: %size%" MaxWarn=1
}
<<CheckFile2>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFile2 -a path=D:\tmp\empty pattern=*.tx filter+size=gt:20 "syntax=%filename%: %size%" MaxWarn=1

Sample Command:

CheckFile2 path=D:\tmp pattern=*.txt filter+size=gt:30 "syntax=%filename%: %size%" MaxWarn=1

ok

Nagios Configuration:

define command {
 command_name <<CheckFile2>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.txt filter+size=gt:30 "syntax=%filename%: %size%" MaxWarn=1
}
<<CheckFile2>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFile2 -a path=D:\tmp pattern=*.txt filter+size=gt:30 "syntax=%filename%: %size%" MaxWarn=1

Sample Command:

CheckFile2 path=D:\tmp\empty pattern=*.tx filter+size=gt:30 "syntax=%filename%: %size%" MaxWarn=1 MaxCrit=4

ok

Nagios Configuration:

define command {
 command_name <<CheckFile2>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckFile2 -a path=D:\tmp\empty pattern=*.tx filter+size=gt:30 "syntax=%filename%: %size%" MaxWarn=1 MaxCrit=4
}
<<CheckFile2>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckFile2 -a path=D:\tmp\empty pattern=*.tx filter+size=gt:30 "syntax=%filename%: %size%" MaxWarn=1 MaxCrit=4

Some more Examples (for 0.3.8) 60

CheckEventLog.dll
The CheckEventLog module checks for problems reported to the windows event log.

CheckEventLog, Check to find errors in the event log.•

Configuration Sections

This is a wrapper page the actual data is on the following page CheckEventLog/config

EventLog?

The [EventLog?] section is used by the CheckEventLog module.

Advanced options:

Option Default Description

debug 0
Log all "hits" and "misses" on the eventlog filter chain, useful for debugging eventlog
checks but very very very noisy so you don't want to accidentally set this on a real
machine.

buffer_size 65536 Sets the buffer memory size used by NSClient++ when processing event log check
commands. For details see below.

debug

Used to log all information regarding hits and misses on the filtering,. This has sever performance impact as
well as log file will grow so do not use unless you are debugging.

[EventLog]
debug=1

buffer_size

This option was added in version 3.4

This parameter is set in the nsc.ini file and needs to be put under a heading of [EventLog?] (this heading may
need to be created). The buffer reserves memory each time an eventlog check is being run when so set the size
accordingly (or you will be wasting lots of memory).

To change the default setting of 64KB add (or edit) in the nsc.ini file an entry for buffer size
(buffer_size=512000) where the value is in bytes. Often times the buffer size will need to be increased when
using the %message% variable in return results. Most often you only need to increase this if you get error
reported in the log file from NSClient++

[EventLog]
buffer_size=512000

CheckEventLog.dll 61

Complete configuration

This are the default values for the entire EventLog? section

[EventLog]
debug=0
buffer_size=64000

EventLog? 62

Configuration for the CheckEventLog
This page describes the configuration options for the CheckEventLog module.

This is a wrapper page the actual data is on the following page CheckEventLog/config

Configuration Sections

EventLog?

The [EventLog?] section is used by the CheckEventLog module.

Advanced options:

Option Default Description

debug 0
Log all "hits" and "misses" on the eventlog filter chain, useful for debugging eventlog
checks but very very very noisy so you don't want to accidentally set this on a real
machine.

buffer_size 65536 Sets the buffer memory size used by NSClient++ when processing event log check
commands. For details see below.

debug

Used to log all information regarding hits and misses on the filtering,. This has sever performance impact as
well as log file will grow so do not use unless you are debugging.

[EventLog]
debug=1

buffer_size

This option was added in version 3.4

This parameter is set in the nsc.ini file and needs to be put under a heading of [EventLog?] (this heading may
need to be created). The buffer reserves memory each time an eventlog check is being run when so set the size
accordingly (or you will be wasting lots of memory).

To change the default setting of 64KB add (or edit) in the nsc.ini file an entry for buffer size
(buffer_size=512000) where the value is in bytes. Often times the buffer size will need to be increased when
using the %message% variable in return results. Most often you only need to increase this if you get error
reported in the log file from NSClient++

[EventLog]
buffer_size=512000

Complete configuration

This are the default values for the entire EventLog? section

[EventLog]

Configuration for the CheckEventLog 63

debug=0
buffer_size=64000

EventLog? 64

CheckEventLog
Check eventlog has many "versions" this page reflects the brand new (still Experimental) version. For the
previous version see [this page].

CheckEventLog is part of the wiki:CheckEventLog module.

This check enumerates all event in the event log and filters out (or in) events and then the resulting list is used
to determine state.

Option Values Description

file
An event log file
name(application,
security, system, etc.)

The name of an eventlog file the default ones are Application, Security
and System. If the specified eventlog was not found due to some
idiotic reason windows opens the "application" log instead.

filter filter expression The filter expression

descriptions None Flag to specify if you want to include string representation of the error
messages.

truncate length of the returned set This will truncate the output after the specified length. As NRPE canonly handle 1024 chars you need to truncate the output.
MaxWarn number of records The maximum records to allow before reporting a warning state.
MaxCrit number of records The maximum records to allow before reporting a critical state.

syntax String

A string to use to represent each matched eventlog entry the following
keywords will be replaced with corresponding values: %source%,
%generated%, %written%, %type%, %severity%, %strings%, %id%
and %message% (%message% requires you to set the description
flag.) %count% (requires the unique flag) can be used to display a
count of the records returned.

unique Flag to indicate unique filtering is used.

Filter Keywords

Keyword Values Description

type event type expression
An event type to filter out: error, warning, info, auditSuccess or
auditFailure.

source string-expression The name of the source of the event.
generated time-expression Time ago the message was generated
written time-expression Time ago the message was written to the log
message string-expression Filter strings in the message. Can be a substring or regularexpression
id numeric-expression Filter based on the event id of the log message.
severity event severity expression Filter based on event severity: error, warning, informational

Operators

Operator Safe Description
= eq Equality (a = b) or (a eq b)
!= ne Not equal (a <= b) or (a le b)

CheckEventLog 65

> gt Greater then (a > b) or (a gt b)
< lt Less then (a < b) or (a lt b)
>= ge Greater then or equal (a >= b) or (a ge b)
<= le Less then or equal (a <= b) or (a le b)
LIKE Compare to strings using substring matching ('a' like 'apple')
AND Both statements has to be true (a AND b)
OR Either statement has to be true (a OR b)
IN See if a value matches a given list ('a' IN (123, 456, 789))
NOT IN See if a value does not matches a given list ('a' IN (123, 456, 789))

Writing Filters

Filters are based upon SQL Where clauses. For instance the following is a valid filter:

severity = 'error'

This is interpreted as "severity" has to be an "error".

Apart from the various keywords (and their valid values) there is a set of operators which can be used to
construct expressions. Thus you can extend the previous to

severity = 'error' OR severity = 'informational' OR severity = 'warning'

You can also use parenthesis to group the order

severity = 'error' AND (severity = 'informational' OR severity = 'warning')

Using Keywords

Since they keywords are handled a bit differently I will write up a short section on each one of them.

id (event id)

The event id is a unique identifier identifying a message "Number" inside an application. Thus it is uniq
together with an event source. Event id is a number which means it unsurprisingly can be compared with other
numbers like 1 or 2 or even 3 or perhaps even 4 (not sure about 5 though) and lets not forget the ohh so hyped
42. Comparing numbers are done using the equality or no equality operators (= and !=) you can also use the in
and not in grouping operators.

The simplest usage is: id = 1008

CheckEventLog file=application debug=true MaxWarn=1 MaxCrit=1 "filter=id = 1008" truncate=800 unique descriptions "syntax=%id%: (%count%)"
CRITICAL:1008: (94), 1008: (1), eventlog: 95 > critical|'eventlog'=95;1;1;

The reason we get "More then one" 1008 result back is because different sources have generated the same
error number (remember id AND source) is unique not by them selves. So adding source to the syntax shows
us this: id = 1008

Operators 66

CheckEventLog file=application debug=true MaxWarn=1 MaxCrit=1 "filter=id = 1008" truncate=800 unique descriptions "syntax=%source% %id%: (%count%)"
CRITICAL:Customer Experience Improvement Program 1008: (94), Windows Search Service 1008: (1), eventlog: 95 > critical|'eventlog'=95;1;1;

The next thing we can do to extend this is to make a slightly more complicated filter: id = 1008 OR id = 1005
OR id = 123 OR id = 8224

CheckEventLog file=application debug=true MaxWarn=1 MaxCrit=1 "filter=id = 1008 OR id = 1005 OR id = 123 OR id = 8224" truncate=800 unique descriptions "syntax=%id%: (%count%)"
CRITICAL:1005: (2), 1005: (118), 1008: (94), 1008: (1), 8224: (164), eventlog: 379 > critical|'eventlog'=379;1;1;

This can of cource be simplified (in this case) using the IN operator: id IN (1008, 1005, 123, 8224)

CheckEventLog file=application debug=true MaxWarn=1 MaxCrit=1 "filter=id IN (1008, 1005, 123, 8224)" truncate=800 unique descriptions "syntax=%id%: (%count%)"
CRITICAL:1005: (2), 1005: (118), 1008: (94), 1008: (1), 8224: (164), eventlog: 379 > critical|'eventlog'=379;1;1;

The opposite can also be used like so: id NOT IN (1008, 1005, 123, 8224)

CheckEventLog file=application debug=true MaxWarn=1 MaxCrit=1 "filter=id NOT IN (1008, 1005, 123, 8224)" truncate=800 unique descriptions "syntax=%id%: (%count%)"
CRITICAL:... (12), 3407: (12), 3408...|'eventlog'=5435;1;1;

source (program generating the event)

Next up is the event source it is set to a string value representing the program generating the event. A string
can be compared to other strings and in addition to the equality and non equality (= and !=) like makes a lot of
sense to match sub strings. You can also use the IN and NOT IN if you want to specify more then one
application but this, I guess, will make less sense. Notice that there is NO regular expression yet this will be
added in the next version.

The simplest example here is: source = 'MsiInstaller?'

CheckEventLog file=application debug=true MaxWarn=1 MaxCrit=1 "filter=source = 'MsiInstaller'" truncate=800 unique descriptions "syntax=%source%: (%count%)"
CRITICAL:MsiInstaller: (78), MsiInstaller: (2), MsiInstaller: (178), ... MsiInstaller: (1), eventlog: 1347 > critical|'eventlog'=1347;1;1;

Then we can try using the like sub string matching like so: source like 's'

CheckEventLog file=application debug=true MaxWarn=1 MaxCrit=1 "filter=source like 's'" truncate=800 unique descriptions "syntax=%source%: (%count%)"
CRITICAL:idsvc: (51), Microsoft-Windows-ApplicationExperienceInfrastructure: (4), SQLBrowser: (26),... MsiInstaller: (254), Mic...|'eventlog'=3174;1;1;

An important not about the like operator is that it is the same from both sides ie: 'hello' like 'h' and 'h' like
'hello' are both true.

Using the in list operator like so: source IN ('idsvc', 'MsiInstaller?')

CheckEventLog file=application debug=true MaxWarn=1 MaxCrit=1 "filter=source IN ('idsvc', 'MsiInstaller')" truncate=800 unique descriptions "syntax=%source%: (%count%)"
CRITICAL:idsvc: (1), MsiInstaller: (78), MsiInstaller: (2), ... MsiInstaller: (1), eventlog: 1348 > critical|'eventlog'=1348;1;1;

generated (when the event was generated)

This is the "hardest" in terms of using I guess. Dates are treated as number internally and thus works much
like a number. The added value that numbers expose are the ability to translate numbers to dates. This
happends by adding a suffix ti a number. For instance 2d is read as 2 days. And 5h is read as 5 hours. The
other important aspect of using dates are how negative numbers are used. Normal dates 5d will be interpreted

id (event id) 67

as "<now> + 5 days". But when you add a negation sign (-) before it will be negated (ish). And this is the
crux. What actually happens is that -5d is treated as neg(5 days from now) and neg negates the date around
"now" so in effect it becomes 5 days ago. This might sound complicated but it not really and you probably
don't need to understand it but I think explains why < and > will work.

Thus the effect of this is that you can do: generated > -5d'

CheckEventLog file=application debug=true MaxWarn=1 MaxCrit=1 "filter=generated > -5d" truncate=800 unique descriptions "syntax=%generated%: (%count%)"
CRITICAL:Thursday, May 13, 2010 03:18:46: (11), ...|'eventlog'=276;1;1;

Written

For details see generated as they work the same. This is the date when the event was written to the log.

Severity

Type

Message

Strings

Examples

CheckEventLog file=application file=system MaxWarn=1 MaxCrit=1 "filter=generated gt -2d AND severity NOT IN ('success', 'informational')" truncate=800 unique descriptions "syntax=%severity%: %source%: %message% (%count%)"

generated (when the event was generated) 68

CheckEventLog
CheckEventLog is part of the wiki:CheckEventLog module. This page describes the new syntax, for the old
syntax refer to the old page: CheckEventLogOld The new syntax is a bit sketchy in the docs as of yet... I shall
try to fix some better examples.. but the best idea would be for someone that uses this to help me with that :)

Before you start using CheckEventLog use this command (it is long but a good place to start):

CheckEventLog file=application file=system filter=new filter=out
 MaxWarn=1 MaxCrit=1
 filter-generated=>2d filter-severity==success filter-severity==informational
 truncate=1023 unique descriptions "syntax=%severity%: %source%: %message% (%count%)"

This check enumerates all event in the event log and filters out (or in) events and then the resulting list is used
to determine state.

Option Values Description

file
An event log file
name(application,
security, system, etc.)

The name of an eventlog file the default ones are Application,
Security and System. If the specified eventlog was not found
due to some idiotic reason windows opens the "application" log
instead.

filter in, out, any, all Specify the way you want to filter things. (See section below)
filter new Has to be set to use this syntax

descriptions None Flag to specify if you want to include string representation of
the error messages.

truncate length of the returned
set

This will truncate the output after the specified length. As
NRPE can only handle 1024 chars you need to truncate the
output.

MaxWarn number of records The maximum records to allow before reporting a warning
state.

MaxCrit number of records The maximum records to allow before reporting a critical state.

syntax String

A string to use to represent each matched eventlog entry the
following keywords will be replaced with corresponding
values: %source%, %generated%, %written%, %type%,
%severity%, %strings%, %id% and %message% (%message%
requires you to set the description flag.) %count% (requires the
unique flag) can be used to display a count of the records
returned.

filter<mode><type> <filter value> A number of strings to use for filtering the event log
unique Flag to indicate unique filtering is used.
The CheckEventLog uses filters to define the "interesting" records from the eventlog.

Syntax

A filter is made up of three things:

Filter mode Determines what happens when the filter is matched.•

CheckEventLog 69

Filter type What the filter will match (ie. which field).•
An Expression What to check for.•

The syntax of a filter is: filter<mode><type>=<expression>

Order

Order is important, as soon as a positive (+) or negative (-) rule is matched it is either discarded or included
and the entry is "finished" and it will continue with the next entry. The best way here is to have an "idea"
either remove all entries first or include all required ones first (depending on what you want to do). You can
mix and such but this will probably complicate things for you unless you actually need to.

Filter modes

Capturing eventlog entries (or discarding them) are done with filters. There are three kinds of filters.

<filter mode> title description
+ positive requirements All these filters must match or the row is discarded.
. potential matches If this matches the line is included (unless another lines overrides).
- negative requirements None of these filters can match (if any do the row is discarded).
Thus if you want to have: all errors and entries from the last month but not the ones from the cdrom, but if the
source is MyModule? get everything. I would break this down as such: (notice there are other options). +
type=error - date=older than 2 months . source=MyModule? This would pick up all errors, and drop all old
records and then pickup all remaining "MyModule?" records (in this case you could have used + on the source
filter since there are no more rules).

other example to simplify it: if for example you want to monitor all errors and to ignore warning and success
in the eventlog you can write the following: filter+severity==error filter-severity==success
filter-severity==informational

and the command with those parameters with others can be like the following: CheckEventLog
file=application file=system filter=new filter=out MaxWarn=1 MaxCrit=1 filter-generated=>2d
filter+severity==error filter-severity==success filter-severity==informational truncate=1023 unique
descriptions "syntax=%severity%: %source%: %message% (%count%)"

Filter Types

<filter
type> Values Description

eventType event type expression
An event type to filter out: error, warning, info, auditSuccess or
auditFailure. Note that unlike other commands, this requires '==', for
example filter-eventType==info. The info,error, etc are all case sensitive.

eventSource string-expression The name of the source of the event. Can be a substring or
regularexpression

generated time-expression Time ago the message was generated
written time-expression Time ago the message was written to the log
message string-expression Filter strings in the message. Can be a substring or regularexpression

Syntax 70

eventID numeric-expression Filter based on the event id of the log message.

severity event severity
expression

Filter based on event severity. (filter-severity==warning)

event type expression

An event type expression is similar to a numeric-expression but instead of a number a "keyword" is taken:
error, warning, info, auditSuccess, auditFailure. So filter.eventType==warning or
filter.eventType=<>warning are examples of event type expressions. Yes this is correct the syntax is:
filter<mode><type>=<expression> in this case <mode> is ".", <type> is "eventType" and <expression> is
"<>warning". This IS confusing but it is "simpler to parse" some day maybe I shall improve this.

filter<key><

event severity expression

An event severity expression is similar to a numeric-expression but instead of a number a "keyword" is
taken: success, informational, warning or error

time expression

A time expression is a date/time interval as a number prefixed by a filter prefix (<, >, =, <>) and followed by
a unit postfix (m, s, h, d, w). A few examples of time expression are: filter+generated=>2d means filter will
match any records older than 2 days, filter+generated=<2h means match any records newer then 2 hours.
Warning, the bash interprets the "<,>,!". Use the "\" to avoid this. e.g. filter+generated=\>2d . On the Client
activate the "Nasty Metachars" Option, to allow the \.

string expression

A string expression is a key followed by a string that specifies a string expression. Currently substr and
regexp are supported. Thus you enter filter.message=regexp:(foo|bar) to enter a regular expression and
filter-message=substr:foo to enter a substring patter match.

Filter in/out

There are two basic ways to filter:

in When you filter in it means all records matching your filter will be returned (the "simplest way")•
out When you filter out it means all records matching your filter will be discarded.•

So:

filter=in filter+eventType==warning
...
filter=out filter-eventType==warning

Will both have the same effect as the first one filters "in" and matches all warnings and the second one filters
out and discards all warnings. There is one very fundamental difference though the first one will only return
the warnings where as the second one will return all entries and all warnings.

Filter Types 71

Unique

When unique is present any duplicate entries matching the filter will be discarded so you will only get back
one of each "kind" of error. Uniqueness is determined by log-file, event-id, event-type and event-category.

Examples

Sample Eventlog Command

Check by EventID for target errors that may have transpired over the past 2 hours.
$ARG1$ = file to check ie. Application, Security, System
$ARG2$ = Max Warn amount
$ARG3$ = Max Critical amount
$ARG4$ = eventID Number

Sample Command:

CheckEventLog filter=new file="application" MaxWarn=10 MaxCrit=20 filter-generated=

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckEventLog>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckEventLog -a filter=new file="$ARG1$" MaxWarn=$ARG2$ MaxCrit=$ARG3$ filter-generated=

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckEventLog -a filter=new file="application" MaxWarn=10 MaxCrit=20 filter-generated=

Another sample

Check the Application event log for errors over the past 48 hours. Filter out any Cdrom and NSClient Errors
as well as all Warnings. Allow 3 target Errors before firing a Warning, and 7 Errors before firing a Critical
State.

This is the corresponding command: Sample Command:

CheckEventLog filter=new file=system file=application MaxWarn=1 MaxCrit=1 filter-generated=>2d filter-eventSource=substr:Service filter-eventSource=substr:Tcpip

CRITICAL: 27 > critical: ESENT

Nagios Configuration:

define command {
 command_name <<CheckEventLog>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckEventLog -a filter=new file=system file=application MaxWarn=1 MaxCrit=1 filter-generated=>2d filter-eventSource=substr:Service filter-eventSource=substr:Tcpip
}
<<CheckEventLog>>

Unique 72

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckEventLog -a filter=new file=system file=application MaxWarn=1 MaxCrit=1 filter-generated=>2d filter-eventSource=substr:Service filter-eventSource=substr:Tcpip

Please note: You need to allow_nasty_meta_chars=1 in the NSC.ini to use time filters like "<2d" (last
48 hours).

Check if a script is running as it should

Just to show a 'hidden' parameter ... I check that a script has successfully finished by writing into the eventlog.
If after 1 day there is no new log entry, I get the message from Nagios.

Sample Command:

CheckEventLog filter=new file=application MinWarn=0 MinCrit=0 filter-generated=\>1d filter+eventSource="pdf_creation" filter+eventType==auditSuccess filter=in filter=all

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckEventLog>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckEventLog -a filter=new file=application MinWarn=0 MinCrit=0 filter-generated=\>1d filter+eventSource="pdf_creation" filter+eventType==auditSuccess filter=in filter=all
}
<<CheckEventLog>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckEventLog -a filter=new file=application MinWarn=0 MinCrit=0 filter-generated=\>1d filter+eventSource="pdf_creation" filter+eventType==auditSuccess filter=in filter=all

Another sample 73

Don't understand filtering ?
Yes I know, there are a lot of options regarding filtering, and they are a bit hard understand. This section tries
to give a more formal definition of what the various options do (form a programming perspective).

Options

There are three different option pairs all used with the same key filter

filter=new / filter=old This one decides the code which is used there are two completely different
concepts and the "Old" one is preferably not to be used as it is slightly less sane.

1.

filter=all / filter=any This is NOT used with filter=new so this option is deprecated and should not be
used unless you are using filter=old.

2.

filter=in / filter=out This option decides what happens if "nothing matches" if you have filter=in that
means if nothing matches you will still get the option where as if you have filter=out you wont. So
this is the last thing that happens in the code.

3.

So what you end up with is:

filter=new this is default in newer versions, so you don't really need this anymore.•
filter=old Should not be used any more.•
filter=any is not used any more.•
filter=all is not used any more.•
filter=in Means you want everything except "something"•
filter=out Means you only want "something"•

Rules

There are three different filter rule types all used in the same way except swapping the - for + for .

filter+severity==error This means that any entries matching this rule is automatically included in the
result. After this we instantly stop matching more rules for this entry.

1.

filter-severity==error This means that any entries matching this rule is automatically excluded in the
result. After this we instantly stop matching more rules for this entry.

2.

filter.severity==error This means that any entries matching this rule is neither automatically excluded
nor automatically included in the result. But after this rule we continue matching more more rules for
this entry. Since this is the default behavior with filter=in there is no reason to use filter=. in this
mode.

3.

How it works

Pseudo code (filter=new)

This is how the filtering is decided:

bFilterIn=true for filter=in and false for filter=out•

bool bMatch = !bFilterIn;

Don't understand filtering ? 74

for(<each rule>) {
 bTmpMatched=<result of rule evaluation>
 if ((mode == filter_minus)&&(bTmpMatched)) {
 // a -<filter> hit so thrash item and bail out!
 bMatch = false;
 break;
 } else if ((mode == filter_plus)&&(!bTmpMatched)) {
 // a +<filter> missed hit so thrash item and bail out!
 bMatch = false;
 break;
 } else if (bTmpMatched) {
 bMatch = true;
 }
}
if (bMatch) {
 <deciding factor> = true;
}

Pseudo code (filter=new) 75

CheckSystem.dll
A module to check various system related things. A list of the modules and there potential use is listed below
here.

wiki:CheckCPU, Check CPU load•
wiki:CheckUpTime, Check system uptime•
wiki:CheckServiceState, Check state of a service•
wiki:CheckProcState, Check state of a process•
wiki:CheckMem, Check memory usage (page)•

Command Line

To simplify debug and setup there is two commandline options that list and test all avalible PDH counters.

NSClient++ -noboot CheckSystem debugpdh•
NSClient++ -noboot CheckSystem listpdh•
NSClient++ -noboot CheckSystem pdhlookup <part of counter name>•
NSClient++ -noboot CheckSystem pdhmatch <pattern>•
NSClient++ -noboot CheckSystem pdhobject <counter root>•

Configuration Sections

CheckSystem Section

This is a wrapper page the actual data is on the following page CheckSystem/config

Overview
CPUBufferSize1.
CheckResolution?2.
auto_detect_pdh3.
dont_use_pdh_index4.
force_language5.
ProcessEnumerationMethod?6.
check_all_services[<key>]7.
MemoryCommitLimit?8.
MemoryCommitByte?9.
SystemSystemUpTime?10.
SystemTotalProcessorTime?11.
debug_skip_data_collection12.

1. 1. 1. 1.

Overview

The configuration for the CheckSystsem? module should in most cases be automagically detected on most
versions of windows (if you have a problem with this let me know so I can update it). Thus you no longer
need to configure the advanced options. There is also some other tweaks that can be configured such as check
resolution and buffer size.

CheckSystem.dll 76

Option Default value Description
CPUBufferSize 1h The time to store CPU load data.
CheckResolution? 10 Time between checks in 1/10 of seconds.
Advanced options:

Option Default value Description

auto_detect_pdh 1 Set this to 0 to disable auto detect (counters.defs)
PDH language and OS version.

dont_use_pdh_index 0 Set this to 1 if you dont want to use indexes for
finding PDH counters.

force_language Set this to a locale ID if you want to force
auto-detection of counters from that locale.

ProcessEnumerationMethod? auto Set the method to use when enumerating
processes PSAPI, TOOLHELP or auto

check_all_services[<key>] ignored Set how to handle services set to <key> state
when checking all services

MemoryCommitLimit? \Memory\Commit Limit Counter to use to check upper memory limit.
MemoryCommitByte? \Memory\Committed Bytes Counter to use to check current memory usage.
SystemSystemUpTime? \System\System Up Time Counter to use to check the uptime of the system.

SystemTotalProcessorTime? \Processor(_total)\%
Processor Time Counter to use for CPU load.

debug_skip_data_collection 0 DEBUG Used to disable collection of data
CPUBufferSize

The time to store CPU load data. The larger the buffer the more memory is used. This is a time value which
takes an optional suffix for which time denominator to use:

Suffix Meaning
s second
m minutes
h hour
d day

Default
1h

CheckResolution?

Time between checks in 1/10 of seconds.

Default
10

auto_detect_pdh

Set this to 0 to disable auto detect (counters.defs) PDH language and OS version.

CheckSystem Section 77

Values

Value Meaning
0 Don't attempt automagically detect the counter names used.
1 Use various menthods to figure out which counters to use.

Default
1

dont_use_pdh_index

When autodetecting counter names do NOT use index to figure out the values.

Values

Value Meaning
0 Use indexes to automagically detect the counter names used.
1 Do NOT use indexes to figure out which counters to use.

Default
0

force_language

When index detection fails your local is used. Here you can override the default local to force another one if
the detected local is incorrect.

Values
Any locale string like SE_sv (not sure here haven't used in years)

Deafult
Empty string which means the system local will be used.

ProcessEnumerationMethod?

DEPRECATED Set the method to use when enumerating processes PSAPI, TOOLHELP or auto No longer
used (only PSAPI is supported).

check_all_services[<key>]

When using check all in a service check the default behaviour is that service set to auto-start should be started
and services set to disabled should be stopped. This can be overridden using this option. Keys avalible:

Key Default Meaning
SERVICE_BOOT_START ignored TODO
SERVICE_SYSTEM_START ignored TODO
SERVICE_AUTO_START started TODO
SERVICE_DEMAND_START ignored TODO
SERVICE_DISABLED stopped TODO

CheckSystem Section 78

MemoryCommitLimit?

Counter to use to check upper memory limit.

Default
\Memory\Commit Limit

MemoryCommitByte?

Counter to use to check current memory usage.

Default
\Memory\Committed Bytes

SystemSystemUpTime?

Counter to use to check the uptime of the system.

Default
\System\System Up Time

SystemTotalProcessorTime?

Counter to use for CPU load.

Default
\Processor(_total)\% Processor Time

debug_skip_data_collection

DEBUG Used to disable collection of data

Default
0

CheckSystem Section 79

Configuration for the CheckSystem
This page describes the configuration options for the CheckSystem module.

CheckSystem Section

This is a wrapper page the actual data is on the following page CheckSystem/config

Overview
CPUBufferSize1.
CheckResolution?2.
auto_detect_pdh3.
dont_use_pdh_index4.
force_language5.
ProcessEnumerationMethod?6.
check_all_services[<key>]7.
MemoryCommitLimit?8.
MemoryCommitByte?9.
SystemSystemUpTime?10.
SystemTotalProcessorTime?11.
debug_skip_data_collection12.

1. 1. 1. 1.

Overview

The configuration for the CheckSystsem? module should in most cases be automagically detected on most
versions of windows (if you have a problem with this let me know so I can update it). Thus you no longer
need to configure the advanced options. There is also some other tweaks that can be configured such as check
resolution and buffer size.

Option Default value Description
CPUBufferSize 1h The time to store CPU load data.
CheckResolution? 10 Time between checks in 1/10 of seconds.
Advanced options:

Option Default value Description

auto_detect_pdh 1 Set this to 0 to disable auto detect (counters.defs)
PDH language and OS version.

dont_use_pdh_index 0 Set this to 1 if you dont want to use indexes for
finding PDH counters.

force_language Set this to a locale ID if you want to force
auto-detection of counters from that locale.

ProcessEnumerationMethod? auto Set the method to use when enumerating
processes PSAPI, TOOLHELP or auto

check_all_services[<key>] ignored Set how to handle services set to <key> state
when checking all services

MemoryCommitLimit? \Memory\Commit Limit Counter to use to check upper memory limit.
MemoryCommitByte? \Memory\Committed Bytes Counter to use to check current memory usage.

Configuration for the CheckSystem 80

SystemSystemUpTime? \System\System Up Time Counter to use to check the uptime of the system.

SystemTotalProcessorTime? \Processor(_total)\%
Processor Time Counter to use for CPU load.

debug_skip_data_collection 0 DEBUG Used to disable collection of data
CPUBufferSize

The time to store CPU load data. The larger the buffer the more memory is used. This is a time value which
takes an optional suffix for which time denominator to use:

Suffix Meaning
s second
m minutes
h hour
d day

Default
1h

CheckResolution?

Time between checks in 1/10 of seconds.

Default
10

auto_detect_pdh

Set this to 0 to disable auto detect (counters.defs) PDH language and OS version.

Values

Value Meaning
0 Don't attempt automagically detect the counter names used.
1 Use various menthods to figure out which counters to use.

Default
1

dont_use_pdh_index

When autodetecting counter names do NOT use index to figure out the values.

Values

Value Meaning
0 Use indexes to automagically detect the counter names used.
1 Do NOT use indexes to figure out which counters to use.

Overview 81

Default
0

force_language

When index detection fails your local is used. Here you can override the default local to force another one if
the detected local is incorrect.

Values
Any locale string like SE_sv (not sure here haven't used in years)

Deafult
Empty string which means the system local will be used.

ProcessEnumerationMethod?

DEPRECATED Set the method to use when enumerating processes PSAPI, TOOLHELP or auto No longer
used (only PSAPI is supported).

check_all_services[<key>]

When using check all in a service check the default behaviour is that service set to auto-start should be started
and services set to disabled should be stopped. This can be overridden using this option. Keys avalible:

Key Default Meaning
SERVICE_BOOT_START ignored TODO
SERVICE_SYSTEM_START ignored TODO
SERVICE_AUTO_START started TODO
SERVICE_DEMAND_START ignored TODO
SERVICE_DISABLED stopped TODO
MemoryCommitLimit?

Counter to use to check upper memory limit.

Default
\Memory\Commit Limit

MemoryCommitByte?

Counter to use to check current memory usage.

Default
\Memory\Committed Bytes

SystemSystemUpTime?

Counter to use to check the uptime of the system.

Default
\System\System Up Time

Overview 82

SystemTotalProcessorTime?

Counter to use for CPU load.

Default
\Processor(_total)\% Processor Time

debug_skip_data_collection

DEBUG Used to disable collection of data

Default
0

Overview 83

CheckCPU
CheckCPU is part of the wiki:CheckSystem module.

This check calculates an average of CPU usage for a specified period of time. The data is always collected in
the background and the size and interval is configured from the CPUBufferSize and CheckResolution?
options. A request has one or more options described in the table below.

Option Values Description
warn load in % Load to go above to generate a warning.
crit load in % Load to go above to generate a critical state.

Time time with optional
prefix

The time to calculate average over.
Multiple time= entries can be given - generating multiple CPU usage
summaries and multiple warn/crits.

nsclient Flag to make the plug in run in NSClient compatibility mode

ShowAll none, long Add this option to show info even if no errors are detected. Set it to long to
show detailed information.

Time can use any of the following postfixes. w=week, d=day, h=hour, m=minute and s=second.

Configuration

The size and frequency of sampled CPU data can be configured and for details refer to the configuration
section for the CheckSystem module

FAQ

Q: "NSClient - ERROR: Could not get data for 60 perhaps we don"t collect data this far back?"•
A: See the configuration section on how to configure the "CPUBufferSize" it has to be LARGER then
your collection time here.

•

Q: How does it handle multi CPU machines?•
A: The returned value is the average value of the CPU load of all the processors.•

Examples

Sample Command

Check that the CPU load for various times is below 80%:

Sample Command:

CheckCPU warn=80 crit=90 time=20m time=10s time=4

OK: CPU Load ok.

Nagios Configuration:

CheckCPU 84

define command {
 command_name <<CheckCPU>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckCPU -a warn=$ARG1$ crit=$ARG2$ time=20m time=10s time=4
}
<<CheckCPU>> 80!90

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckCPU -a warn=80 crit=90 time=20m time=10s time=4

Multiple Time entry

Showing multiple time entry usage and returned data

Sample Command:

CheckCPU warn=2 crit=80 time=5m time=1m time=10s

WARNING: WARNING: 5m: average load 8% > warning

Nagios Configuration:

define command {
 command_name <<CheckCPU>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckCPU -a warn=2 crit=$ARG1$ time=5m time=1m time=10s
}
<<CheckCPU>> 80

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckCPU -a warn=2 crit=80 time=5m time=1m time=10s

check_load

Check CPU load with intervals like known from Linux/Unix (with example thresholds):

Sample Command:

CheckCPU warn=100 crit=100 time=1 warn=95 crit=99 time=5 warn=90 crit=95 time=15

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckCPU>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckCPU -a warn=100 crit=100 time=1 warn=95 crit=99 time=5 warn=90 crit=95 time=15
}
<<CheckCPU>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckCPU -a warn=100 crit=100 time=1 warn=95 crit=99 time=5 warn=90 crit=95 time=15

Sample Command 85

CheckUpTime
This check checks the uptime of a server and if the time is less then the times given as arguments a state is
returned.

Option Values Description
MaxCrit time Maximum time the system is allowed to be up
MinCrit time Minimum time the system is allowed to be up
MaxWarn time Maximum time the system is allowed to be up
MinWarn time Minimum time the system is allowed to be up
nsclient Flag to make the plug in run in NSClient compatibility mode
ShowAll Add this option to show details even if an error is not encountered.
Alias string A string to use as alias for the values (default is uptime)

Examples

Check that the system has been running for at least a day:

Sample Command:

CheckUpTime MinWarn=1d MinCrit=12h

WARNING: Client has uptime (19h) <warning (24h)

Nagios Configuration:

define command {
 command_name <<CheckUpTime>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckUpTime -a MinWarn=$ARG1$ MinCrit=$ARG2$
}
<<CheckUpTime>> 1d!12h

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckUpTime -a MinWarn=1d MinCrit=12h

CheckUpTime 86

CheckServiceState
This check checks the state of one or more service on the system and generates a critical state if any service is
not in the required state.

Option Values Description
ShowAll A flag to toggle if all service states should be listed.
ShowFail? (default) A flag to indicate if only failed service states should be listed.

service=state
A service name or service display name and a state the service should have.
The state can be either started or stopped. If no state is given started is
assumed.

CheckAll? Check to see that all services set to auto-start are started and all set to
disabled are not started.

exclude service name Exclude this service from CheckAll?
truncate off Truncate the returned data.

Configuration

ow to interpret "CheckAll?" can be configred and for details refer to the configuration section for the
CheckSystem module

Examples

Sample check

Check that myService is running and that MyStoppedService? is not running:

Sample Command:

CheckServiceState ShowAll myService MyStoppedService=stopped

OK: myService : Running - MyStoppedService : Stopped

Nagios Configuration:

define command {
 command_name <<CheckServiceState>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckServiceState -a ShowAll $ARG1$ $ARG2$=stopped
}
<<CheckServiceState>> myService!MyStoppedService

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckServiceState -a ShowAll myService MyStoppedService=stopped

Auto started

Check that all auto-start services are running but exclude some that are intentionaly not in the correct state:

CheckServiceState 87

Sample Command:

CheckServiceState CheckAll exclude=wampmysqld exclude=MpfService

OK: OK: All services are running.

Nagios Configuration:

define command {
 command_name <<CheckServiceState>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckServiceState -a CheckAll exclude=$ARG1$ exclude=$ARG2$
}
<<CheckServiceState>> wampmysqld!MpfService

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckServiceState -a CheckAll exclude=wampmysqld exclude=MpfService

Service name with spaces

If the service you are excluding has spaces in, you need to enclose the entire option in quotes, not just the
string.

Sample Command:

CheckServiceState CheckAll exclude=wampmysqld "exclude=NetBackup SAN Client Fibre Transport Service"

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckServiceState>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckServiceState -a CheckAll exclude=$ARG1$ "exclude=$ARG2$"
}
<<CheckServiceState>> wampmysqld!NetBackup SAN Client Fibre Transport Service

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckServiceState -a CheckAll exclude=wampmysqld "exclude=NetBackup SAN Client Fibre Transport Service"

Auto started 88

CheckProcState
This check checks the state of one or more processes on the system and generates a critical state if any process
is not in the required state.

Option Values Description

match=(strings|substr|regexp)

Specifies if the supplied value must match the actual process name or
command line exactly (strings, the default), must match a part of the
actual value (substr), or if it should be matched as a regular
expression.

cmdLine If present, the process name specified is compared to the entire
command line. By default it is matched to the process name only.

ShowAll A flag to toggle if all process states should be listed.
ShowFail? (default) A flag to indicate if only failed process states should be listed.

process=state
A process name and a state the process should have. The state can be
either started or stopped. If no state is given started is assumed. The
name is the name of the executable.

Alias alias Give a process an alias
ignore-perf-data If present performance data will be stripped out
Proc:<alias>=<state> A process name and a state the process should have.

(Max|Min)(Warn|Crit)Count number Process count bounds For instance: MaxCritCount?=4 means if a
process has more then 4 instances it will be a critical condition.

The commands given in the examples below should be edited (for your own needs) and copied to the nsc.ini
file (comes with installation and can be found in the monitored machine, aka the client) under section
[External Alias].

Please remember that for each external alias there's a command declared (under NSCA command or NRPE
command sections ? depends what you're working with) that uses the external alias declared.

The command also need to have identical name to the value defined for that service check in the Nagios linux
server (usually windows.cfg file and service_description field in define Service block).

Let's start with a simple one ? check that a file named NameOfMonitoredFileReplaceWithYours?.exe is
running (aka in started state in the windows machine).

In the [External Alias] section in the nsc.ini file there's an alias that looks like this:

alias_process=checkProcState $ARG1$=started

so we will leave it and we just have to supply it with our file name as an argument.

We will need to add the following line to the command section (NRPE command section if that's what you are
working with).

NEED_TO_COMPLETE_EXAMPLE_HERE_BY_MICKEM_STAY_TUNED

NSCA is all client side, so if you're working with NSCA you cant use arguments and probably the following
line (without the alias section) will be good for you: Check Process=CheckProcState

CheckProcState 89

NameOfMonitoredFileReplaceWithYours?.exe=started

again, Check Process is the name declared in Nagios server and it has to be the same.

Examples

Process running/not running

Check that quake.exe is not running and NSClient++.exe is running:

Sample Command:

CheckProcState ShowAll quake.exe=stopped NSClient++.exe=started

OK: quake.exe : Stopped - NSClient++.exe : Running

Nagios Configuration:

define command {
 command_name <<CheckProcState>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckProcState -a ShowAll $ARG1$=stopped $ARG2$=started
}
<<CheckProcState>> quake.exe!NSClient++.exe

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckProcState -a ShowAll quake.exe=stopped NSClient++.exe=started

Process running/not running

Check that quake.exe is not running and my.exe and NSClient++.exe is running and only show problems:

Sample Command:

CheckProcState quake.exe=stopped NSClient++.exe=started

CRITICAL: NSClient++.exe : Stopped

Nagios Configuration:

define command {
 command_name <<CheckProcState>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckProcState -a $ARG1$=stopped $ARG2$=started
}
<<CheckProcState>> quake.exe!NSClient++.exe

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckProcState -a quake.exe=stopped NSClient++.exe=started

Examples 90

Check number of processes running

make sure that atleast 50 instance of svchost.xe is running.

Sample Command:

CheckProcState MinCritCount=50 svchost.exe=started

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckProcState>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckProcState -a MinCritCount=50 $ARG1$=started
}
<<CheckProcState>> svchost.exe

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckProcState -a MinCritCount=50 svchost.exe=started

Substrings and commandline

Check that cmd.exe with substring printloop in commandline is running:

Sample Command:

CheckProcState match=regexp cmdLine ShowAll .*cmd.*printloop.*=started

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckProcState>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckProcState -a match=regexp cmdLine ShowAll .*cmd.*$ARG1$.*=started
}
<<CheckProcState>> printloop

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckProcState -a match=regexp cmdLine ShowAll .*cmd.*printloop.*=started

More process counts

Check if there's any notepad.exe running. OK if there's none, warn if there's 4, critical when there's 10:

Sample Command:

CheckProcState MaxWarnCount=4 MaxCritCount=10 ShowAll notepad.exe=started

OK: ...

Check number of processes running 91

Nagios Configuration:

define command {
 command_name <<CheckProcState>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckProcState -a MaxWarnCount=$ARG2$ MaxCritCount=$ARG3$ ShowAll $ARG1$=started
}
<<CheckProcState>> notepad.exe!4!10

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckProcState -a MaxWarnCount=4 MaxCritCount=10 ShowAll notepad.exe=started

More process counts 92

CheckMem
This check checks the memory (page) usage and generates a state if the memory is above or below give
parameters.

Option Values Description
MaxWarn size-value or % The maximum size allowed before a warning state is returned.
MaxCrit size-value or % The maximum size allowed before a critical state is returned.
MinWarn size-value or % The minimum size allowed before a warning state is returned.
MinCrit size-value or % The minimum size allowed before a critical state is returned.

ShowAll None, long Add this option to show info even if no errors are detected. Set it to long
to show detailed information.

type page, paged, virtual,
physical

What kind of memory to check (does not yet support stacking to check
multiple kinds)

The size-value or % is a normal numeric-value with an optional unit or percentage postfix to specify large
sizes. The available postfixes are B for Byte, K for Kilobyte, M for Megabyte, G for Gigabyte and finally %
for percent free space.

What the different types really mean

Type Meaning

page The maximum amount of memory the current process can commit, in bytes. This value is equal to or
smaller than the system-wide available commit value.

paged System-wide committed memory limit (same as used in NSCLient, ie. via PDH, available on NT4)

virtual
Number of pages of swap currently in use (note - it does NOT = (physical + swap) as on *nix boxes)
According to M$ this is: Size of unreserved and uncommitted memory in the user mode portion of
the virtual address space of the calling process, in bytes.

physical
The amount of physical memory currently available, in bytes. This is the amount of physical
memory that can be immediately reused without having to write its contents to disk first. It is the
sum of the size of the standby, free, and zero lists.

Examples

Page

Check that the page is below 80%:

Sample Command:

CheckMEM MaxWarn=80% MaxCrit=90% ShowAll type=page

OK: OK: page: 758M (795205632B)

Nagios Configuration:

define command {
 command_name <<CheckMEM>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckMEM -a MaxWarn=$ARG1$% MaxCrit=$ARG2$% ShowAll type=page
}

CheckMem 93

<<CheckMEM>> 80!90

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckMEM -a MaxWarn=80% MaxCrit=90% ShowAll type=page

Physical

Check that the physical is below 80%:

Sample Command:

CheckMEM MaxWarn=80% MaxCrit=90% ShowAll type=physical

OK: OK: physical: 758M (795205632B)

Nagios Configuration:

define command {
 command_name <<CheckMEM>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckMEM -a MaxWarn=$ARG1$% MaxCrit=$ARG2$% ShowAll type=physical
}
<<CheckMEM>> 80!90

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckMEM -a MaxWarn=80% MaxCrit=90% ShowAll type=physical

Multiple

Check that the physical is below 80%:

Sample Command:

CheckMEM MaxWarn=80% MaxCrit=90% ShowAll type=physical type=page type=virtual

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckMEM>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckMEM -a MaxWarn=$ARG1$% MaxCrit=$ARG2$% ShowAll type=physical type=page type=virtual
}
<<CheckMEM>> 80!90

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckMEM -a MaxWarn=80% MaxCrit=90% ShowAll type=physical type=page type=virtual

Page 94

CheckCounter
Used to check performance counters. This is probably how most things can be checked as there are a lot of
performance counters. To find performance counters, use the program perfmon that is shipped with windows.
You can list all available performance counters using the listpdh option as shown in the examples below.

An important note is that performance counters are language and version specific.

Option Values Description
MaxWarn Number Maximum allowed number
MaxCrit Number Maximum allowed number
MinWarn Number Minimum allowed number
MinCrit Number Minimum allowed number
ShowAll None A Boolean flag to show value even if no state is returned.

Counter Performance
Counter Add a performance counter to this check

Counter:<name> Performance
Counter

Add a named performance counter. The <name> will be used as an
alias.

Averages true, false Set this to false to make performance checking faster of counters that
doesn't represent average values.

InvalidStatus? UNKNOWN The status to return if an invalid counter was requested.

FAQ

Q: When using CheckCounter, does the NSClient++ client need to allow nasty chars? E.g. do you
have to change the default setting: allow_nasty_chars=0 to.... allow_nasty_chars=1 ?

•

A: No, you can configure it via aliases as well using the CHeckExternalCommands module. but to
configure it from "nagios" you need it.

•

Q: How do you define local commands?•
A: Use the alias section from external commands•

Q: How do you list all instances of a counter?•
A: Use the listCounterInstances command e.g. check_nrpe -c listCounterInstances -a "MSExchange
Database"

•

Command line

List all available performance counters, and debug them (means, open, try to read, close, etc)

nsclient++ CheckSystem listpdh
...
"NSClient++.exe" CheckSystem debugpdh
...

CheckCounter 95

check_nt vs. check_nrpe

define command {
 command_name check_counter
command_line $USER1$/check_nt $HOSTADDRESS$ -p 12489
 -v COUNTER -l $ARG1$ -d SHOWALL -w $ARG2$ -c $ARG3$
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$
 -c CheckCounter -a $ARG1$ ShowAll MaxWarn=$ARG2$ MaxCrit=$ARG3$
}

Examples

Sample Command

Check that mutex count (on WinXP) is below 500:

Sample Command:

CheckCounter "Counter:mutex=\\Objects\\Mutexes" ShowAll MaxWarn=500 MaxCrit=1000

WARNING: WARNING: mutex: 673 > warning

Nagios Configuration:

define command {
 command_name <<CheckCounter>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckCounter -a "Counter:$ARG1$=$ARG2$" ShowAll MaxWarn=$ARG3$ MaxCrit=$ARG4$
}
<<CheckCounter>> mutex!\\Objects\\Mutexes!500!1000

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckCounter -a "Counter:mutex=\\Objects\\Mutexes" ShowAll MaxWarn=500 MaxCrit=1000

Using Instances

Using instances in counters

Sample Command:

CheckCounter "Counter:proc=\\Processor(_total)\\% Processor Time" ShowAll MaxWarn=50 MaxCrit=80

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckCounter>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckCounter -a "Counter:$ARG1$=$ARG2$" ShowAll MaxWarn=$ARG3$ MaxCrit=$ARG4$
}
<<CheckCounter>> proc!\\Processor(_total)\\% Processor Time!50!80

From Commandline (with NRPE):

check_nt vs. check_nrpe 96

check_nrpe -H IP -p 5666 -c CheckCounter -a "Counter:proc=\\Processor(_total)\\% Processor Time" ShowAll MaxWarn=50 MaxCrit=80

Microsoft Exchange 5.5 IS RPC Operations / Sec

Sample Command:

CheckCounter "Counter=\MSExchangeIS\RPC Operations/sec" ShowAll MaxWarn=300 MaxCrit=400

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckCounter>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckCounter -a "Counter=$ARG1$" ShowAll MaxWarn=$ARG2$ MaxCrit=$ARG3$
}
<<CheckCounter>> \MSExchangeIS\RPC Operations/sec!300!400

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckCounter -a "Counter=\MSExchangeIS\RPC Operations/sec" ShowAll MaxWarn=300 MaxCrit=400

Windows 2000/2003 Physical Disk Time

Sample Command:

CheckCounter "Counter=\PhysicalDisk(_Total)\% Disk Time" ShowAll MaxWarn=60 MaxCrit=90

OK: ...

Nagios Configuration:

define command {
 command_name <<CheckCounter>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckCounter -a "Counter=$ARG1$" ShowAll MaxWarn=$ARG2$ MaxCrit=$ARG3$
}
<<CheckCounter>> \PhysicalDisk(_Total)\% Disk Time!60!90

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckCounter -a "Counter=\PhysicalDisk(_Total)\% Disk Time" ShowAll MaxWarn=60 MaxCrit=90

Using Instances 97

CheckHelpers.dll
The CheckHelpers module has various helper function to alter other checks in various ways. This module
does not check anything by it self.

wiki:CheckAlwaysOK, Alter the return code of another check to always return OK.•
wiki:CheckAlwaysCRITICAL, Alter the return code of another check to always return CRITICAL.•
wiki:CheckAlwaysWARNING, Alter the return code of another check to always return WARNING.•
wiki:CheckMultiple, Runs multiple checks and returns the worst state. Useful for minimizing network
traffic and command definitions.

•

Configuration

This module has no configuration directives.

CheckHelpers.dll 98

CheckAlwaysOK
Runs another check and alters the return state to always return OK. This command has no options instead
everything is inject as a new command. Notice that this command does not alter the return string so if a check
(as most do) prints WARNING that will still remain, only the return state is altered. The return state is what
Nagios will use to determine state.

Examples

Run the sample check from CheckDisk but alter the return state. Notice that WARNING is still printed, yet
Nagios will interpret this as an OK state.

 CheckAlwaysOK CheckFileSize ShowAll MaxWarn=1024M MaxCrit=4096M File:WIN=c:\WINDOWS*.*
 WARNING: WIN: 2G (2325339822B)|WIN=2325339822;1073741824;4294967296
 (but this will be returned with an "OK" state so Nagios will show this as working even though it is infac not working)

CheckAlwaysOK 99

CheckAlwaysCRITICAL
Runs another check and alters the return state to always return CRITICAL. This command has no options
instead everything is inject as a new command. Notice that this command does not alter the return string so if
a check (as most do) prints WARNING that will still remain, only the return state is altered. The return state is
what Nagios will use to determine state.

Examples

Run the sample check from CheckDisk but alter the return state. Notice that WARNING is still printed, yet
Nagios will interpret this as a critical state.

 CheckAlwaysCRITICAL CheckFileSize ShowAll MaxWarn=1024M MaxCrit=4096M File:WIN=c:\WINDOWS*.*
 WARNING: WIN: 2G (2325339822B)|WIN=2325339822;1073741824;4294967296

CheckAlwaysCRITICAL 100

CheckAlwaysWARNING
Runs another check and alter the return state to always return WARNING. This command has no options
instead everything is inject as a new command. Notice that this command does not alter the return string so if
a check (as most do) prints WARNING that will still remain, only the return state is altered. The return state is
what Nagios will use to determine state.

Examples

Run the sample check from CheckDisk but alter the return state. Notice that WARNING is still printed, yet
Nagios will interpret this as an warning state.

 CheckAlwaysOK CheckFileSize ShowAll MaxWarn=1024M MaxCrit=4096M File:WIN=c:\WINDOWS*.*
 WARNING: WIN: 2G (2325339822B)|WIN=2325339822;1073741824;4294967296

CheckAlwaysWARNING 101

CheckOK
This command always returns "OK".

Examples

 CheckOK Hello
 OK: Hello

CheckOK 102

CheckCRITICAL
This command always returns "CRITICAL".

Examples

 CheckCRITICAL Hello
 CRITICAL: Hello

CheckCRITICAL 103

CheckWARNING
This command always returns "WARNING".

Examples

 CheckWARNINGHello
 WARNING: Hello

CheckWARNING 104

CheckMultiple
Runs multiple checks and returns the worst state. It allows you to check an entire system in one go.

Option Values Description
command The command to run A command to execute, you can have any number of this option.
Be careful when combining multiple checks/commands which may return UNKNOWN status. If the first
command returns OK, but the other returns UNKNOWN, the final status result in OK.

Examples

Run two checks (CheckDriveSize and ChEckMeM) and return the worst state. Performance data and message
is collected and concatenated.

 CheckMultiple command=CheckDriveSize MaxWarn=1M MaxCrit=2M Drive=c:\\volumne_test\\ command=ChEckMeM MaxWarn=80% MaxCrit=90%
 CRITICAL: c:\volumne_test\: 3M (4193280B) > critical, OK memory within bounds.|c:\volumne_test\=4193280;1024K (1048576B);2M (2097152B); page=31% 80%;90%;

CheckMultiple 105

CheckVersion
This command returns the current version (as a string)

Examples

 CheckVersion
 OK '0.3.3.20 2008-07-02'

CheckVersion 106

CheckTaskSched.dll
The CheckTaskSched module check check various aspects of the task scheduler. Feel free to request checks
that you need.

CheckTaskSched, Check if tasks are working.•

Configuration

This module has no configuration directives.

CheckTaskSched.dll 107

CheckTaskSched
CheckTaskSchedis? part of the wiki:CheckTaskSched module.

Arguments:

Option Values Description

filter in, out, any, all Specify the way you want to filter things. (See section
below)

truncate length of the returned
set

This will truncate the output after the specified length. As
NRPE can only handle 1024 chars you need to truncate
the output.

Alias string-expression The alias to use.
debug N/A Print the filter chain.

MaxWarn number of records The maximum hits to allow before reporting a warning
state.

MaxCrit number of records The maximum hits to allow before reporting a critical
state.

MinWarn number of records The minimum hits to allow before reporting a warning
state.

MinCrit number of records The minimum hits to allow before reporting a critical
state.

+filter-accountName string-expression TODO.
+filter-applicationName string-expression TODO.
+filter-comment string-expression TODO.
+filter-creator string-expression TODO.
+filter-exitCode numeric-expression TODO.
+filter-flags numeric-expression TODO.
+filter-mostRecentRunTime date-expression? TODO.
+filter-nextRunTime date-expression? TODO.
+filter-parameters string-expression TODO.
+filter-workingDirectory string-expression TODO.
-filter-accountName string-expression TODO.
-filter-applicationName string-expression TODO.
-filter-comment string-expression TODO.
-filter-creator string-expression TODO.
-filter-exitCode numeric-expression TODO.
-filter-flags numeric-expression TODO.
-filter-mostRecentRunTime date-expression? TODO.
-filter-nextRunTime date-expression? TODO.
-filter-parameters string-expression TODO.
-filter-workingDirectory string-expression TODO.
Make sure we dont have any tasks wit last-exit code equals to 1

CheckTaskSched 108

CheckTaskSched +filter-exit-code==1 ShowAll MaxWarn=1 MaxCrit=1

TODO On some case, NSClient++.exe crash while "CheckTaskSched ShowAll" CheckTaskSched.dll fault at
address 0x00014324 (NSClient++.exe version 20081113-1003)

Arguments: 109

FileLogger.dll
A module that logs all messages to file if no logging module is loaded no error messages will be logged thus it
is hard to find problems.

Configuration Sections

This is a wrapper page the actual data is on the following page FileLogger/config

Overview
debug1.
file2.
date_mask3.
root_folder4.

1. 1. 1. 1.

Overview

This section has options for how logging is performed with the [FileLogger] module. First off notice that for
logging to make sense you need to enable the ?FileLogger.dll? module that logs all log data to a text file in the
same directory as the NSClient++ binary if you don?t enable any logging module nothing will be logged.

The options you have available here are

Option Default Description

debug 0 A Boolean value that toggles if debug information should be logged or
not. This can be either 1 or 0.

file nsclient.log The file to write log data to. If no directory is used this is relative to the
NSClient++ binary.

date_mask %Y-%m-%d
%H:%M:%S The date format used when logging to a file

root_folder exe Root folder if not absolute
debug

A Boolean value that toggles if debug information should be logged or not. This can be either 1 or 0.

Default
0

Values

Value Meaning
0 Don't log debug messages
1 Log debug messages
file

The file to write log data to. If no directory is used this is relative to the NSClient++ binary.

Default
nsclient.log

FileLogger.dll 110

date_mask

The date format used when logging to a file

Default
%Y-%m-%d %H:%M:%S

root_folder

Root folder if not absolute

Default
exe

Values

local-app-data

The file system directory that contains application data for all users. A typical path is
C:\Documents and Settings\All Users\Application Data. This folder is used for application
data that is not user specific. For example, an application can store a spell-check dictionary, a
database of clip art, or a log file in the CSIDL_COMMON_APPDATA folder. This
information will not roam and is available to anyone using the computer.

exe Location of NSClient++ binary

Overview 111

Configuration for the FileLogger
This page describes the configuration options for the File logging module.

This is a wrapper page the actual data is on the following page FileLogger/config

Configuration Sections

Overview
debug1.
file2.
date_mask3.
root_folder4.

1. 1. 1. 1.

Overview

This section has options for how logging is performed with the [FileLogger] module. First off notice that for
logging to make sense you need to enable the ?FileLogger.dll? module that logs all log data to a text file in the
same directory as the NSClient++ binary if you don?t enable any logging module nothing will be logged.

The options you have available here are

Option Default Description

debug 0 A Boolean value that toggles if debug information should be logged or
not. This can be either 1 or 0.

file nsclient.log The file to write log data to. If no directory is used this is relative to the
NSClient++ binary.

date_mask %Y-%m-%d
%H:%M:%S The date format used when logging to a file

root_folder exe Root folder if not absolute
debug

A Boolean value that toggles if debug information should be logged or not. This can be either 1 or 0.

Default
0

Values

Value Meaning
0 Don't log debug messages
1 Log debug messages
file

The file to write log data to. If no directory is used this is relative to the NSClient++ binary.

Default
nsclient.log

Configuration for the FileLogger 112

date_mask

The date format used when logging to a file

Default
%Y-%m-%d %H:%M:%S

root_folder

Root folder if not absolute

Default
exe

Values

local-app-data

The file system directory that contains application data for all users. A typical path is
C:\Documents and Settings\All Users\Application Data. This folder is used for application
data that is not user specific. For example, an application can store a spell-check dictionary, a
database of clip art, or a log file in the CSIDL_COMMON_APPDATA folder. This
information will not roam and is available to anyone using the computer.

exe Location of NSClient++ binary

Overview 113

NRPEListener.dll
This module accepts incoming NRPE connections and responds by executing various checks and returns their
result. To use this you need to have check_nrpe or another NRPE client. This is similar to check_nt
(NSClient) but much more flexible and supports encryption. This only drawback is that it lacks any
authorization.

As this module has the ability to generate command handlers by configuration there are command handlers
but nothing built in. This is present for compatiblity only it is suggested to use the [CheckExternalScripts]
instead.

Configuration Sections

NRPE Section

This is a wrapper page the actual data is on the following page NRPEListener/config/nrpe

Overview
port1.
allowed_hosts2.
use_ssl3.
bind_to_address4.
command_timeout5.
allow_arguments6.
allow_nasty_meta_chars7.
socket_timeout8.
script_dir9.
performance_data10.
socket_back_log11.
string_length12.

1. 1. 1. 1.

Overview

This is configuration for the NRPE module that controls how the NRPE listener operates.

Option Default Description
port 5666 The port to listen to
allowed_hosts A list of hosts allowed to connect via NRPE.
use_ssl 1 Boolean value to toggle SSL encryption on the socket connection

command_timeout 60
The maximum time in seconds that a command can execute. (if more then
this execution will be aborted). NOTICE this only affects external
commands not internal ones.

allow_arguments 0

A Boolean flag to determine if arguments are accepted on the incoming
socket. If arguments are not accepted you can still use external commands
that need arguments but you have to define them in the NRPE handlers
below. This is similar to the NRPE "dont_blame_nrpe" option.

allow_nasty_meta_chars 0 Allow NRPE execution to have ?nasty? meta characters that might affect
execution of external commands (things like > ? etc).

NRPEListener.dll 114

socket_timeout 30 The timeout when reading packets on incoming sockets. If the data has not
arrived within this time we will bail out. and discard the connection.

Advanced options:

Option Default Description

performance_data 1 Send performance data back to nagios (set this to 0 to remove all performance
data)

socket_back_log
Number of sockets to queue before starting to refuse new incoming connections.
This can be used to tweak the amount of simultaneous sockets that the server
accepts. This is an advanced option and should not be used.

string_length 1024
Length of payload to/from the NRPE agent. This is a hard specific value so you
have to "configure" (read recompile) your NRPE agent to use the same value for
it to work.

script_dir Load all scripts in a directory and use them as commands. Probably dangerous
but usefull if you have loads of scripts :)

bind_to_address The address to bind to when listening to sockets.
port

The port to listen to

Default
5666

allowed_hosts

A list (comma separated) with hosts that are allowed to poll information from NRPE. This will replace the one
found under Setting for NRPE if present. If not present the same option found under Settings will be used. If
both are blank all hosts will be allowed to access the system

Default
Empty list (falls back to the one defined under [Settings]

use_ssl

Boolean value to toggle SSL (Secure Socket Layer) encryption on the socket connection. This corresponds to
the -n flag in check_nrpe

Values

Value Meaning
0 Don't use SSL
1 Use SSL encryption

Default
1 (enabled)

NRPE Section 115

bind_to_address

The address to bind to when listening to sockets. If not specified the "first" (all?) one will be used (often the
correct one).

Values
IP address of any interface of the server.

Default
Empty (first (all?) interface will be used)

command_timeout

The maximum time in seconds that a command can execute. (if more then this execution will be aborted).
NOTICE this only affects external commands not internal ones so internal commands may execute forever.

It is usually a good idea to set this to less then the timeout used with check_nrpe

Default
60

allow_arguments

A Boolean flag to determine if arguments are accepted on the incoming socket. If arguments are not accepted
you can still use external commands that need arguments but you have to define them in the NRPE handlers
below. This is similar to the NRPE "dont_blame_nrpe" option.

NOTICE That there are more then one place to set this!

Default
0 (means don't allow arguments)

Values

Value Meaning
0 Don't allow arguments
1 Allow arguments.
allow_nasty_meta_chars

Allow NRPE execution to have ?nasty? meta characters that might affect execution of external commands
(things like > ? etc).

Default
0 (means don't allow meta characters)

Values

Value Meaning
0 Don't allow meta characters
1 Allow meta characters

NRPE Section 116

socket_timeout

The timeout when reading packets on incoming sockets. If the data has not arrived within this time we will
bail out. and discard the connection.

Default
30 seconds

script_dir

Load all scripts in a directory and use them as commands. Probably dangerous but useful if you have loads of
scripts :)

Default
Empty (don't load any scripts)

performance_data

Send performance data back to Nagios (set this to 0 to remove all performance data)

Default
1

Values

Value Meaning
0 Don't send performance data
1 Send performance data
socket_back_log

Number of sockets to queue before starting to refuse new incoming connections. This can be used to tweak
the amount of simultaneous sockets that the server accepts. This is an advanced option and should not be used.

string_length

Length of payload to/from the NRPE agent. This is a hard specific value so you have to "configure" (read
recompile) your NRPE agent to use the same value for it to work.

Default
1024

NRPE Handler Section

This is a wrapper page the actual data is on the following page NRPEListener/config/nrpe_handlers

Ovreview
Alias (builtin commands)1.
NRPE_NT Syntax2.

1. 1. 1. 1.

NRPE Section 117

Ovreview

DEPRECATED This part of the module is deprecated and should not be used. Refer to the
[CheckExternalScripts] module instead. This module can add two types of command handlers.

First there are external command handlers that execute a separate program or script and simply return the
output and return status from that. The other possibility is to create an alias for an internal command.

To add an external command you add a command definition under the ?NRPE Handlers? section. A command
definition has the following syntax:

[NRPE Handlers]
command_name=/some/executable with some arguments
test_batch_file=c:\test.bat foo $ARG1$ bar
command[check_svc]=inject CheckService checkAll

The above example will on an incoming ?test_batch_file? execute the c:\test.bat file and return the output as
text and the return code as the Nagios status.

Alias (builtin commands)

To add an internal command or alias is perhaps a better word. You add a command definition under the
?NRPE Handlers? section. A command definition with the following syntax:

command_name=inject some_other_command with some arguments
check_cpu=inject checkCPU warn=80 crit=90 5 10 15

The above example will on an incoming ?check_cpu? execute the internal command ?checkCPU? with
predefined arguments give in the command definition.

NRPE_NT Syntax

To leverage existing infrastructure you can copy your old definitions from NRPE_NT as-is. Thus the
following:

command[check_svc]=inject CheckService checkAll

translates into a command called check_svc with the following definition:

CheckServcice checkAll

NRPE Handler Section 118

Configuration for the NRPEListener
This page describes the configuration options for the NRPE module.

NRPE Section

This is a wrapper page the actual data is on the following page NRPEListener/config/nrpe

Overview
port1.
allowed_hosts2.
use_ssl3.
bind_to_address4.
command_timeout5.
allow_arguments6.
allow_nasty_meta_chars7.
socket_timeout8.
script_dir9.
performance_data10.
socket_back_log11.
string_length12.

1. 1. 1. 1.

Overview

This is configuration for the NRPE module that controls how the NRPE listener operates.

Option Default Description
port 5666 The port to listen to
allowed_hosts A list of hosts allowed to connect via NRPE.
use_ssl 1 Boolean value to toggle SSL encryption on the socket connection

command_timeout 60
The maximum time in seconds that a command can execute. (if more then
this execution will be aborted). NOTICE this only affects external
commands not internal ones.

allow_arguments 0

A Boolean flag to determine if arguments are accepted on the incoming
socket. If arguments are not accepted you can still use external commands
that need arguments but you have to define them in the NRPE handlers
below. This is similar to the NRPE "dont_blame_nrpe" option.

allow_nasty_meta_chars 0 Allow NRPE execution to have ?nasty? meta characters that might affect
execution of external commands (things like > ? etc).

socket_timeout 30 The timeout when reading packets on incoming sockets. If the data has not
arrived within this time we will bail out. and discard the connection.

Advanced options:

Option Default Description

performance_data 1 Send performance data back to nagios (set this to 0 to remove all performance
data)

socket_back_log

Configuration for the NRPEListener 119

Number of sockets to queue before starting to refuse new incoming connections.
This can be used to tweak the amount of simultaneous sockets that the server
accepts. This is an advanced option and should not be used.

string_length 1024
Length of payload to/from the NRPE agent. This is a hard specific value so you
have to "configure" (read recompile) your NRPE agent to use the same value for
it to work.

script_dir Load all scripts in a directory and use them as commands. Probably dangerous
but usefull if you have loads of scripts :)

bind_to_address The address to bind to when listening to sockets.
port

The port to listen to

Default
5666

allowed_hosts

A list (comma separated) with hosts that are allowed to poll information from NRPE. This will replace the one
found under Setting for NRPE if present. If not present the same option found under Settings will be used. If
both are blank all hosts will be allowed to access the system

Default
Empty list (falls back to the one defined under [Settings]

use_ssl

Boolean value to toggle SSL (Secure Socket Layer) encryption on the socket connection. This corresponds to
the -n flag in check_nrpe

Values

Value Meaning
0 Don't use SSL
1 Use SSL encryption

Default
1 (enabled)

bind_to_address

The address to bind to when listening to sockets. If not specified the "first" (all?) one will be used (often the
correct one).

Values
IP address of any interface of the server.

Default
Empty (first (all?) interface will be used)

Overview 120

command_timeout

The maximum time in seconds that a command can execute. (if more then this execution will be aborted).
NOTICE this only affects external commands not internal ones so internal commands may execute forever.

It is usually a good idea to set this to less then the timeout used with check_nrpe

Default
60

allow_arguments

A Boolean flag to determine if arguments are accepted on the incoming socket. If arguments are not accepted
you can still use external commands that need arguments but you have to define them in the NRPE handlers
below. This is similar to the NRPE "dont_blame_nrpe" option.

NOTICE That there are more then one place to set this!

Default
0 (means don't allow arguments)

Values

Value Meaning
0 Don't allow arguments
1 Allow arguments.
allow_nasty_meta_chars

Allow NRPE execution to have ?nasty? meta characters that might affect execution of external commands
(things like > ? etc).

Default
0 (means don't allow meta characters)

Values

Value Meaning
0 Don't allow meta characters
1 Allow meta characters
socket_timeout

The timeout when reading packets on incoming sockets. If the data has not arrived within this time we will
bail out. and discard the connection.

Default
30 seconds

script_dir

Load all scripts in a directory and use them as commands. Probably dangerous but useful if you have loads of
scripts :)

Overview 121

Default
Empty (don't load any scripts)

performance_data

Send performance data back to Nagios (set this to 0 to remove all performance data)

Default
1

Values

Value Meaning
0 Don't send performance data
1 Send performance data
socket_back_log

Number of sockets to queue before starting to refuse new incoming connections. This can be used to tweak
the amount of simultaneous sockets that the server accepts. This is an advanced option and should not be used.

string_length

Length of payload to/from the NRPE agent. This is a hard specific value so you have to "configure" (read
recompile) your NRPE agent to use the same value for it to work.

Default
1024

NRPE Handler Section

This is a wrapper page the actual data is on the following page NRPEListener/config/nrpe_handlers

Ovreview
Alias (builtin commands)1.
NRPE_NT Syntax2.

1. 1. 1. 1.

Ovreview

DEPRECATED This part of the module is deprecated and should not be used. Refer to the
[CheckExternalScripts] module instead. This module can add two types of command handlers.

First there are external command handlers that execute a separate program or script and simply return the
output and return status from that. The other possibility is to create an alias for an internal command.

To add an external command you add a command definition under the ?NRPE Handlers? section. A command
definition has the following syntax:

[NRPE Handlers]
command_name=/some/executable with some arguments
test_batch_file=c:\test.bat foo $ARG1$ bar
command[check_svc]=inject CheckService checkAll

Overview 122

The above example will on an incoming ?test_batch_file? execute the c:\test.bat file and return the output as
text and the return code as the Nagios status.

Alias (builtin commands)

To add an internal command or alias is perhaps a better word. You add a command definition under the
?NRPE Handlers? section. A command definition with the following syntax:

command_name=inject some_other_command with some arguments
check_cpu=inject checkCPU warn=80 crit=90 5 10 15

The above example will on an incoming ?check_cpu? execute the internal command ?checkCPU? with
predefined arguments give in the command definition.

NRPE_NT Syntax

To leverage existing infrastructure you can copy your old definitions from NRPE_NT as-is. Thus the
following:

command[check_svc]=inject CheckService checkAll

translates into a command called check_svc with the following definition:

CheckServcice checkAll

Ovreview 123

NSClientListener.dll
The NSClientListener module is written to allow backwards compatibility with the old NSClient and
check_nt. It has a listener (server) that accepts checks from the check_nt command and responds accordingly.
Due to the nature of the protocol and the limitation in the client NRPE is recommended but if you like this
works just fine for "simple things".

The following check_nt checks are supported.

CLIENTVERSION•
CPULOAD•
UPTIME•
USEDDISKSPACE•
MEMUSE•
SERVICESTATE•
PROCSTATE•
COUNTER•

Configuration Sections

NSClient Section

This is a wrapper page the actual data is on the following page NSClientListener/config

Ovreview
port1.
obfuscated_password2.
password3.
allowed_hosts4.
bind_to_address5.
socket_timeout6.
socket_back_log7.
version8.

1. 1. 1. 1.

Ovreview

This is the [NSClientListener] module configuration options.

Option Default
value Description

port 12489 The port to listen to
obfuscated_password An obfuscated version of password.
password The password that incoming client needs to authorize themselves by.

allowed_hosts A list (coma separated) with hosts that are allowed to connect to
NSClient++ via NSClient protocol.

socket_timeout 30 The timeout when reading packets on incoming sockets.
Advanced options:

NSClientListener.dll 124

Option Default value Description

socket_back_log

Number of sockets to queue before starting to refuse new incoming
connections. This can be used to tweak the amount of simultaneous
sockets that the server accepts. This is an advanced option and
should not be used.

bind_to_address
The address to bind to when listening to sockets, useful if you have
more then one NIC/IP address and want the agent to answer on a
specific one.

version auto
The version number to return for the CLIENTVERSION check
(useful to "simulate" an old/different version of the client, auto will
be generated from the compiled version string inside NSClient++

port

The port to listen to

Default
12489

obfuscated_password

An obfuscated version of password. For more details refer to the password option below.

Default
Empty string whjich means we will use the value from password instead.

password

The password that incoming client needs to authorize themselves by. This option will replace the one found
under Settings for NSClient. If this is blank the option found under Settings will be used. If both are blank
everyone will be granted access.

Default
Empty string whjich means we will use the value from password in the [Settings] section instead.

allowed_hosts

A list (coma separated) with hosts that are allowed to poll information from NSClient++. This will replace the
one found under Setting for NSClient if present. If not present the same option found under Settings will be
used. If both are blank all hosts will be allowed to access the system.

BEWARE: NSClient++ will not resolve the IP address of DNS entries if the service is set to startup
automatically. Use an IP address instead or set cache_allowed_hosts=0 see above.

Default
Empty list (falls back to the one defined under [Settings]

bind_to_address

The address to bind to when listening to sockets. If not specified the "first" (all?) one will be used (often the
correct one).

NSClient Section 125

Values
IP address of any interface of the server.

Default
Empty (first (all?) interface will be used)

socket_timeout

The timeout when reading packets on incoming sockets. If the data has not arrived within this time we will
bail out. and discard the connection.

Default
30 seconds

socket_back_log

Number of sockets to queue before starting to refuse new incoming connections. This can be used to tweak
the amount of simultaneous sockets that the server accepts. This is an advanced option and should not be used.

version

The version number to return for the CLIENTVERSION check (useful to "simulate" an old/different version
of the client, auto will be generated from the compiled version string inside NSClient++

Values:

If given any str4ing will be returned unless auto in which case the proper
version will be returned

Default
auto

Examples

Check the size of C:\ and make sure it warns at 80% used and a critical warning at 95% used:

 define command {
 command_name check_nt_disk
 command_line $USER1$/check_nt -s passphrase -H $HOSTADDRESS$ -p 12489
 -v USEDDISKSPACE -l $ARG1$ -w $ARG2$ -c $ARG3$
 }
 check_command check_nt_disk!c!80!95

Check Perfmon value for File IO reads

 define command {
 command_name check_io_read
 command_line /usr/local/nagios/libexec/check_nt -H $HOSTADDRESS$
 -v COUNTER -l "\\System\\File Read Bytes/sec"
 }
 check_command check_io_read

NSClient Section 126

Configuration for the NSClientListener
This page describes the configuration options for the NSClient module.

NSClient Section

This is a wrapper page the actual data is on the following page NSClientListener/config

Ovreview
port1.
obfuscated_password2.
password3.
allowed_hosts4.
bind_to_address5.
socket_timeout6.
socket_back_log7.
version8.

1. 1. 1. 1.

Ovreview

This is the [NSClientListener] module configuration options.

Option Default
value Description

port 12489 The port to listen to
obfuscated_password An obfuscated version of password.
password The password that incoming client needs to authorize themselves by.

allowed_hosts A list (coma separated) with hosts that are allowed to connect to
NSClient++ via NSClient protocol.

socket_timeout 30 The timeout when reading packets on incoming sockets.
Advanced options:

Option Default value Description

socket_back_log

Number of sockets to queue before starting to refuse new incoming
connections. This can be used to tweak the amount of simultaneous
sockets that the server accepts. This is an advanced option and
should not be used.

bind_to_address
The address to bind to when listening to sockets, useful if you have
more then one NIC/IP address and want the agent to answer on a
specific one.

version auto
The version number to return for the CLIENTVERSION check
(useful to "simulate" an old/different version of the client, auto will
be generated from the compiled version string inside NSClient++

Configuration for the NSClientListener 127

port

The port to listen to

Default
12489

obfuscated_password

An obfuscated version of password. For more details refer to the password option below.

Default
Empty string whjich means we will use the value from password instead.

password

The password that incoming client needs to authorize themselves by. This option will replace the one found
under Settings for NSClient. If this is blank the option found under Settings will be used. If both are blank
everyone will be granted access.

Default
Empty string whjich means we will use the value from password in the [Settings] section instead.

allowed_hosts

A list (coma separated) with hosts that are allowed to poll information from NSClient++. This will replace the
one found under Setting for NSClient if present. If not present the same option found under Settings will be
used. If both are blank all hosts will be allowed to access the system.

BEWARE: NSClient++ will not resolve the IP address of DNS entries if the service is set to startup
automatically. Use an IP address instead or set cache_allowed_hosts=0 see above.

Default
Empty list (falls back to the one defined under [Settings]

bind_to_address

The address to bind to when listening to sockets. If not specified the "first" (all?) one will be used (often the
correct one).

Values
IP address of any interface of the server.

Default
Empty (first (all?) interface will be used)

socket_timeout

The timeout when reading packets on incoming sockets. If the data has not arrived within this time we will
bail out. and discard the connection.

Default
30 seconds

Ovreview 128

socket_back_log

Number of sockets to queue before starting to refuse new incoming connections. This can be used to tweak
the amount of simultaneous sockets that the server accepts. This is an advanced option and should not be used.

version

The version number to return for the CLIENTVERSION check (useful to "simulate" an old/different version
of the client, auto will be generated from the compiled version string inside NSClient++

Values:

If given any str4ing will be returned unless auto in which case the proper
version will be returned

Default
auto

Ovreview 129

SysTray.dll
A simple module to show an icon in the tray when the service is running this module does not export any
check commands.

NOTICE This is not used on windows vista and above!

On Vista you enable the shared session like so:

[Settings]
...
shared_Session=1

For a service to be able to "interact with the desktop" it has to be set to do so. By default (for "security
reasons") it is not enabled so if you want to use this module you need to enable that. The simplest way to do is
to run the following command:

Make sure the service is installed
nsclient++ -install
Change the service so it can interact with the desktop
nsclient++ -noboot SysTray install

For this to work the service has to have been installed first (ie. "nsclient++ -install").

SysTray.dll 130

CheckWMI.dll
The CheckWMI module has various WMI related functions used to query and check the WMI (Windows
Managment Instrumenation). Feel free to request checks that you need.

CheckWMI, Check large resultsets from (for instance are there more than 5-rows matching criteria X,
ie. more than 5 Internet Explorer processes witch uses more then 123Mb memory).

•

CheckWMIValue, Check the result of a query (ie. are the current memory utilization over X)•

Configuration

This module has no configuration directives.

CheckWMI.dll 131

CheckWMI
CheckWMI is part of the wiki:CheckWMI module.

New version that is *a lot* more usefull (i hope). It is still alpha need to do more testing but I would like to
get some initialö feedback on the syntax and such. Also feel free to try it out and report bugs to me (might
wanna keep track of memory and such as I have not done so myself yet) To debug and help you setup your
queries there is also a command line interface to run queries and see the result.

nsclient++ CheckWMI <query>

The syntax for this is Similar to CheckEventLog but simpliefied in regards to syntax so I hope it shall be
easier to use and udnerstand.

This check enumerates all rows returned from your query filtering results and check the count against a set
war and crit threshold. If you want to check a value there will soon be a separet check for that. This is
designed to find "anomalies" in result-sets.

Option Values Description

filter any, all Specify the way you want to filter things. (See section
below) Not yet implemented (default is all)

truncate length of the
returned set

This will truncate the output after the specified length. As
NRPE can only handle 1024 chars you need to truncate
the output.

MaxWarn number of
records

The maximum records to allow before reporting a
warning state.

MaxCrit number of
records

The maximum records to allow before reporting a critical
state.

<mode>filter-<type>:<Column> <filter value> A number of strings to use for filtering the event log
namespace root\\cimv2 Namespace to use when querying
Alias Alias to use for returned data
columnSeparator ", " Field separator in the returned string.
columnSyntax Syntax for the returned message.

Filters

Capturing result entries (or discarding them) are done with filters. There are three kinds of filters.

* positive requirments (+)

All these filters must match or the row is discarded.

* negative requriments (-)

None of these filters can match (if any do the row is discarded).

* normal matches (.)

CheckWMI 132

If this matches the line is included.

The syntax of the filter is: <mode>filter-<type>:<Column>=<expression>

Filter <Mode>s

<mode> title description
+ required filter If you miss this filter the line is discarded
. normal filter If a hit the line is included
- negative filter If a line hits this it is discarded

Filter <Type>s

<type> Value Description
string [[string expression]] Match the column againast a string expression
numeric [[numeric expression]] Match the column againast a numeric expression

Filter <Columns>s

A Column (if specified) will make the filter woirk againast a specific column in the result set.

string expression

A string expression is a key followed by a string that specifies a string expression. Currently substr and
regexp are supported. Thus you enter filter.message=regexp:(foo|bar) to enter a regular expression and
filter-message=substr:foo to enter a substring patter match.

columnSyntax

The column syntax field can be used to alter the renderd output. It has the following keys (everything else will
be a string):

Key Description
%column% The name of the current column
%value% The value
%<column>% The value of a named column

Examples

A sample query

A not very useful check which serves to illustrate how to use the command. Check to see if there is 2 CPUs
present (or cores)

Sample Command:

CheckWMI MaxCrit=3 MinWarn=1 "Query=Select * from win32_Processor"

Filters 133

WARNING: WARNING:: 1 <warning

Nagios Configuration:

define command {
 command_name <<CheckWMI>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckWMI -a MaxCrit=3 MinWarn=1 "Query=Select * from win32_Processor"
}
<<CheckWMI>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckWMI -a MaxCrit=3 MinWarn=1 "Query=Select * from win32_Processor"

Using Query Alias

Adding query alias to the not very useful check above (Alias is cpu)

Sample Command:

CheckWMI MaxCrit=3 MinWarn=1 "Query:cpu=Select * from win32_Processor"

WARNING: WARNING:: cpu: 1 <warning

Nagios Configuration:

define command {
 command_name <<CheckWMI>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckWMI -a MaxCrit=3 MinWarn=1 "Query:cpu=Select * from win32_Processor"
}
<<CheckWMI>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckWMI -a MaxCrit=3 MinWarn=1 "Query:cpu=Select * from win32_Processor"

Overriding Query Alias

Overriding the previous query alias with foobar

Sample Command:

CheckWMI MaxCrit=3 MinWarn=1 "Query:cpu=Select * from win32_Processor" Alias=foobar

WARNING: WARNING:: foobar: 1 <warning

Nagios Configuration:

define command {
 command_name <<CheckWMI>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckWMI -a MaxCrit=3 MinWarn=1 "Query:cpu=Select * from win32_Processor" Alias=foobar
}
<<CheckWMI>>

A sample query 134

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckWMI -a MaxCrit=3 MinWarn=1 "Query:cpu=Select * from win32_Processor" Alias=foobar

Checking With filters

This uses the UserAccount? object to query if any enabled users have password expires set to false.

Sample Command:

CheckWMI CheckWMI MaxCrit=3 MaxWarn=1 "Query:badUsers=Select Name, PasswordExpires, Disabled from Win32_UserAccount" "columnSyntax=%Name%" "columnSeparator= & " +filter-numeric:PasswordExpires==0 +filter-numeric:Disabled==0

WARNING: WARNING:mickem & Xiqun Liao

Nagios Configuration:

define command {
 command_name <<CheckWMI>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckWMI -a CheckWMI MaxCrit=3 MaxWarn=1 "Query:badUsers=Select Name, PasswordExpires, Disabled from Win32_UserAccount" "columnSyntax=%Name%" "columnSeparator= & " +filter-numeric:PasswordExpires==0 +filter-numeric:Disabled==0
}
<<CheckWMI>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckWMI -a CheckWMI MaxCrit=3 MaxWarn=1 "Query:badUsers=Select Name, PasswordExpires, Disabled from Win32_UserAccount" "columnSyntax=%Name%" "columnSeparator= & " +filter-numeric:PasswordExpires==0 +filter-numeric:Disabled==0

Debbuging queries

To try a query use the following syntax:

nsclient++ CheckWMI Select * from win32_Processor

Overriding Query Alias 135

CheckWMIValue
CheckWMIValue is part of the wiki:CheckWMI module.

It is still alpha need to do more testing but I would like to get some initial feedback on the syntax and
such. Also feel free to try it out and report bugs to me (might wanna keep track of memory and such as
I have not done so myself yet) To debug and help you setup your queries there is also a command line
interface to run queries and see the result.

nsclient++ CheckWMI <query>

The syntax for this is Similar to other check commands so it should be pretty straight forward to set it up. The
plugin will run a WMI query and check the returned columns against bounds provided by the checker (nagios)
and report the result.

Option Values Description

MaxWarn Numericvalue The maximum allowed value for the column(s).

MaxCrit Numeric
value The maximum allowed value for the column(s).

MinWarn Numeric
value The minimum allowed value for the column(s).

MinCrit Numeric
value The minimum allowed value for the column(s).

ShowAll Empty, long If present will display information even if an item is not reporting a state. If set to
long will display more information.

Query WMI Query The WMI query to ask (not stackable, only one query at a time)

Check A column
name

A column name to check (if * all columns will be checked) (this is stackable, so you
can compare any number of columns)

truncate numeric
value The maximum length of the query-result.

AliasCol? Columnname A column to be included (prefixed) in the alias for matching columns.

Examples

Check the CPU load on all CPUs and warn if above 50 and critical if above 80

Sample Command:

CheckWMIValue "Query=Select * from win32_Processor" MaxWarn=50 MaxCrit=80 Check:CPU=LoadPercentage ShowAll=long

OK: OK: Everything seems fine.

Nagios Configuration:

define command {
 command_name <<CheckWMIValue>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckWMIValue -a "Query=Select * from win32_Processor" MaxWarn=50 MaxCrit=80 Check:CPU=LoadPercentage ShowAll=long

CheckWMIValue 136

}
<<CheckWMIValue>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckWMIValue -a "Query=Select * from win32_Processor" MaxWarn=50 MaxCrit=80 Check:CPU=LoadPercentage ShowAll=long

CHeck Threads in a process

Check threads in processes and make sure a process does not have more then 50 threads (critical at 100)

Sample Command:

CheckWMIValue "Query=select Caption, ThreadCount from Win32_Process" MaxWarn=50 MaxCrit=100 Check:threads=ThreadCount AliasCol=Caption

WARNING: System threads: 98 > warning

Nagios Configuration:

define command {
 command_name <<CheckWMIValue>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckWMIValue -a "Query=select Caption, ThreadCount from Win32_Process" MaxWarn=50 MaxCrit=100 Check:threads=ThreadCount AliasCol=Caption
}
<<CheckWMIValue>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckWMIValue -a "Query=select Caption, ThreadCount from Win32_Process" MaxWarn=50 MaxCrit=100 Check:threads=ThreadCount AliasCol=Caption

Ping status

Little example on W32_PingStatus, I use this to check my VPN tunnels.

Sample Command:

CheckWMIValue 'Query=SELECT StatusCode FROM Win32_PingStatus WHERE Address="$ARG1$"' MaxCrit=1 Check:Status:=StatusCode

Nagios Configuration:

define command {
 command_name <<CheckWMIValue>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c CheckWMIValue -a 'Query=SELECT StatusCode FROM Win32_PingStatus WHERE Address="$ARG1$"' MaxCrit=1 Check:Status:=StatusCode
}
<<CheckWMIValue>>

From Commandline (with NRPE):

check_nrpe -H IP -p 5666 -c CheckWMIValue -a 'Query=SELECT StatusCode FROM Win32_PingStatus WHERE Address="$ARG1$"' MaxCrit=1 Check:Status:=StatusCode

Status-Code = 0 means good. Everything above 0 is BAD

For more information on Win32_PingStatus See:
http://msdn.microsoft.com/en-us/library/aa394350(VS.85).aspx

Examples 137

http://msdn.microsoft.com/en-us/library/aa394350(VS.85).aspx

Using from command line

To try a query use the following syntax:

nsclient++ CheckWMI Select * from win32_Processor

Using from command line 138

CheckExternalScripts.dll
This module allows you to check external scripts and/or programs.

Configuration for the CheckExternalScripts

This page describes the configuration options for the CheckExternalScriptsmodule.

External Script

This is a wrapper page the actual data is on the following page CheckExternalScripts/config/external_script

Overview
command_timeout1.
allow_arguments2.
allow_nasty_meta_chars3.
script_dir4.

1. 1. 1. 1.

Overview

Configure how the External Scripts module works (not to be confused with the "External Scripts" section
below that holds scripts that can be run.

Option Default
value Description

command_timeout 60 The maximum time in seconds that a command can execute.

allow_arguments 0 A Boolean flag to determine if arguments are accepted on the command
line.

allow_nasty_meta_chars 0 Allow NRPE execution to have ?nasty? meta characters that might
affect execution of external commands.

script_dir When set all files in this directory will be available as scripts.
WARNING

command_timeout

The maximum time in seconds that a command can execute. (if more then this execution will be aborted).
NOTICE this only affects external commands not internal ones.

Values:

Any number (positive integer) representing time in seconds.

Default
60 (seconds).

Example
Set timeout to 120 seconds

[External Script]
command_timeout=120

CheckExternalScripts.dll 139

allow_arguments

A Boolean flag to determine if arguments are accepted on the incoming socket. If arguments are not accepted
you can still use external commands that need arguments but you have to define them in the NRPE handlers
below. This is similar to the NRPE "dont_blame_nrpe" option.

Values

Value Meaning
0 Disallow arguments for commands
1 Allow arguments for commands

Default
0 (false).

Example
Allow arguments

[External Script]
allow_arguments=1

allow_nasty_meta_chars

Allow NRPE execution to have ?nasty? meta characters that might affect execution of external commands
(things like > ? etc).

Values
This list contain all possible values

Value Meaning
0 Disallow nasty arguments for commands
1 Allow nasty arguments for commands

Default
0 (false)

Example
Allow nasty arguments

[External Script]
allow_nasty_meta_chars=1

script_dir

When set all files in this directory will be available as scripts. This is pretty dangerous but can be a bit useful
if you use many scripts and you are sure no one else can add files there.

Value
Any directory (can be relative to NSClient++)

Default
Empty (meaning no scripts are added)

Example

External Script 140

All scripts ending with bat in the scripts folder (of NSClient++ installation directory) will be added as
scripts.

[External Script]
script_dir=.\scripts*.bat

External Scripts

This is a wrapper page the actual data is on the following page CheckExternalScripts/config/external_scripts

Overview1. 1. 1. 1.

Overview

A list of scripts and their aliases available to run from the CheckExternalScripts module. Syntax is:
<command>=<script> <arguments> for instance:

check_es_long=scripts\long.bat
check_es_ok=scripts\ok.bat
check_es_nok=scripts\nok.bat
check_vbs_sample=cscript.exe //T:30 //NoLogo scripts\check_vb.vbs
check_es_args=scripts\args.bat static $ARG1$ foo

To configure scripts that request arguments, use the following syntax:

check_script_with_arguments=scripts\script_with_arguments.bat $ARG1$ $ARG2$ $ARG3$

Use ./check_nrpe ... -c check_script_with_arguments -a arg1 arg2 arg3 ... Make sure you type $ARG1$ and
not $arg1$ (case sensitive)

NOTICE For the above to work you need to enable allow_arguments in both NRPEListener and
CheckExternalScripts!

External Alias

This is a wrapper page the actual data is on the following page CheckExternalScripts/config/external_alias

Overview1. 1. 1. 1.

Overview

A simple and nifty way to define aliases in NSClient++. Aliases are good for defining commands locally or
just to simply the nagios configuration. There is a series of "useful" aliases defined in the included
configuration file which is a good place to start. An alias is an internal command that has been "wrapped" (to
add arguments). If you want to create an alias for an external command you can do so but it still needs the
normal defnition and the alias will use the internal alias of the external command.

WARNING Be careful so you don't create loops (ie check_loop=check_a, check_a=check_loop)

[External Aliases]
alias_cpu=checkCPU warn=80 crit=90 time=5m time=1m time=30s

External Scripts 141

alias_disk=CheckDriveSize MinWarn=10% MinCrit=5% CheckAll FilterType=FIXED
alias_service=checkServiceState CheckAll
alias_mem=checkMem MaxWarn=80% MaxCrit=90% ShowAll type=physical

Examples

Check Users Logged In

This script enables you to check how many users are active (logged in via RDP) on any given server. This is
especially useful for Terminal Servers to check the user load. The script also supplies performance data so you
can graph the user load.

Check_users_loggedin accept none OR two arguments. Specifying only one or more then two arguments will
return an error.
If no arguments are given, only the current user load is returned as an 'OK' state. Specifying a warning and
critical number will return a warning or a critical state if the user load exceeds the threshold.

Sample command

check_users_loggedin=scripts\check_users_loggedin $ARG1$ $ARG2$

check_nrpe_users_loggedin,40 50
OK: Users logged in: 1|'users'=1;40;50;

Nagios configuration

define command {
 command_name <<CheckUsersLoggedIn>>
 command_line check_nrpe -H $HOSTADDRESS$ -p 5666 -c check_users_loggedin -a 40 50
}
<<CheckUsersLoggedIn>>

External Alias 142

Configuration for the CheckExternalScripts
This page describes the configuration options for the CheckExternalScriptsmodule.

External Script

This is a wrapper page the actual data is on the following page CheckExternalScripts/config/external_script

Overview
command_timeout1.
allow_arguments2.
allow_nasty_meta_chars3.
script_dir4.

1. 1. 1. 1.

Overview

Configure how the External Scripts module works (not to be confused with the "External Scripts" section
below that holds scripts that can be run.

Option Default
value Description

command_timeout 60 The maximum time in seconds that a command can execute.

allow_arguments 0 A Boolean flag to determine if arguments are accepted on the command
line.

allow_nasty_meta_chars 0 Allow NRPE execution to have ?nasty? meta characters that might
affect execution of external commands.

script_dir When set all files in this directory will be available as scripts.
WARNING

command_timeout

The maximum time in seconds that a command can execute. (if more then this execution will be aborted).
NOTICE this only affects external commands not internal ones.

Values:

Any number (positive integer) representing time in seconds.

Default
60 (seconds).

Example
Set timeout to 120 seconds

[External Script]
command_timeout=120

allow_arguments

A Boolean flag to determine if arguments are accepted on the incoming socket. If arguments are not accepted
you can still use external commands that need arguments but you have to define them in the NRPE handlers

Configuration for the CheckExternalScripts 143

below. This is similar to the NRPE "dont_blame_nrpe" option.

Values

Value Meaning
0 Disallow arguments for commands
1 Allow arguments for commands

Default
0 (false).

Example
Allow arguments

[External Script]
allow_arguments=1

allow_nasty_meta_chars

Allow NRPE execution to have ?nasty? meta characters that might affect execution of external commands
(things like > ? etc).

Values
This list contain all possible values

Value Meaning
0 Disallow nasty arguments for commands
1 Allow nasty arguments for commands

Default
0 (false)

Example
Allow nasty arguments

[External Script]
allow_nasty_meta_chars=1

script_dir

When set all files in this directory will be available as scripts. This is pretty dangerous but can be a bit useful
if you use many scripts and you are sure no one else can add files there.

Value
Any directory (can be relative to NSClient++)

Default
Empty (meaning no scripts are added)

Example
All scripts ending with bat in the scripts folder (of NSClient++ installation directory) will be added as
scripts.

[External Script]

Overview 144

script_dir=.\scripts*.bat

External Scripts

This is a wrapper page the actual data is on the following page CheckExternalScripts/config/external_scripts

Overview1. 1. 1. 1.

Overview

A list of scripts and their aliases available to run from the CheckExternalScripts module. Syntax is:
<command>=<script> <arguments> for instance:

check_es_long=scripts\long.bat
check_es_ok=scripts\ok.bat
check_es_nok=scripts\nok.bat
check_vbs_sample=cscript.exe //T:30 //NoLogo scripts\check_vb.vbs
check_es_args=scripts\args.bat static $ARG1$ foo

To configure scripts that request arguments, use the following syntax:

check_script_with_arguments=scripts\script_with_arguments.bat $ARG1$ $ARG2$ $ARG3$

Use ./check_nrpe ... -c check_script_with_arguments -a arg1 arg2 arg3 ... Make sure you type $ARG1$ and
not $arg1$ (case sensitive)

NOTICE For the above to work you need to enable allow_arguments in both NRPEListener and
CheckExternalScripts!

External Alias

This is a wrapper page the actual data is on the following page CheckExternalScripts/config/external_alias

Overview1. 1. 1. 1.

Overview

A simple and nifty way to define aliases in NSClient++. Aliases are good for defining commands locally or
just to simply the nagios configuration. There is a series of "useful" aliases defined in the included
configuration file which is a good place to start. An alias is an internal command that has been "wrapped" (to
add arguments). If you want to create an alias for an external command you can do so but it still needs the
normal defnition and the alias will use the internal alias of the external command.

WARNING Be careful so you don't create loops (ie check_loop=check_a, check_a=check_loop)

[External Aliases]
alias_cpu=checkCPU warn=80 crit=90 time=5m time=1m time=30s
alias_disk=CheckDriveSize MinWarn=10% MinCrit=5% CheckAll FilterType=FIXED
alias_service=checkServiceState CheckAll
alias_mem=checkMem MaxWarn=80% MaxCrit=90% ShowAll type=physical

External Scripts 145

LUAScript.dll
This module allows you to write and change checks in the Lua scripting language. For a quite "guide" on how
to write scripts for NSClient++ see the LUAScript/guide page. For information on the Lua scripting language
and built-in modules and commands refer to the official Lua pages at: http://www.lua.org/ and
http://lua-users.org/wiki/SampleCode

Configuration

[LUA Scripts]

A list of LUA script to load at startup. In difference to "external checks" all LUA scripts are loaded at startup.
Names have no meaning since the script (on boot) submit which commands are available and tie that to
various functions.

[LUA Scripts]
scripts\test.lua

This is just a quick intro, I will try to add more info here and also try to add more system related functions
(like WMI and performance counter access) in the future.

LUAScript.dll 146

http://www.lua.org/
http://lua-users.org/wiki/SampleCode

Debugging Lua
Use the print statement to print to the console (can bee sen from nsclient++ /test).

With a Lua script like this loaded:

nscp.register('lua_debug', 'debug')

function debug (command)
 print ('Hello world: ' .. command)
end

Then you run nsclient++ /test:

nsclient++ /test
...
lua_debug Greetings
...
d \nsclient++.cpp(540) Injecting: lua_debug: Greetings
Hello world: lua_debug
e \script_wrapper.hpp(280) No arguments returned from script.
l \nsclient++.cpp(575) No handler for command: 'lua_debug'

Debugging Lua 147

A simple script
print('Loading test script...') -- Just print some debug info

nscp.register('check_something', 'something') -- Register a check-command to a function

function something (command)
 -- Check command function (notice arguments are not supported yet)

 -- Inject and run another check command
 code, msg, perf = nscp.execute('CheckCPU','time=5','MaxCrit=5')
 -- Print the resulting code
 print(code .. ': ' .. msg .. ', ' .. perf)
 -- Return the information (slightly modified)
 return code, 'hello from LUA: ' .. msg, perf
end

A simple script 148

Structure of a script
First all script register all commands they will use (it is possible to register commands at a later time) So you
could have a command that "turn on" other commands, but since there is no "turn off" (ie. remove) it does not
make much sense as of yet.

To register command you call the nscp.register function like so:

nscp.register('command_alias', 'function_in_lua_to_use');

This will when the command command_alias is run execute the function_in_lua_to_use in your script. You
can have as many commands as you like so the following is possible:

nscp.register('lua_1', 'lua_function_1');
nscp.register('lua_2', 'lua_function_2');
nscp.register('lua_3', 'lua_function_3');
nscp.register('lua_4', 'lua_function_4');
nscp.register('lua_5', 'lua_function_5');

The functions have the following syntax:

function lua_check_function (command)
 print ('Hello world: ' .. command)
 return 'ok', 'Everything is fine!', 'fine=10%;80;90;'

As of now there are no support for arguments but in the future they will be added. Printing from a
check_function is useless (apart from debug) so generally don't do that. The return is a variable list If;

3 options are returned they are assumed to be in order: code, message and performance data•
2 options are returned they are assumed to be in order: code, message•
1 options are returned they are assumed to be in order: code•

The code can be:

crit (critical)•
warn (warning)•
ok (ok)•
error (critical)•

Structure of a script 149

A 'useful' script
-- Register the command
nscp.register('has', 'check_file_exists')

-- Return true if file exists and is readable.
function file_exists(path)
 local file = io.open(path, "rb")
 if file then file:close() end
 return file ~= nil
end

function check_file_exists (command)
 if file_exists('c:\\foo.bar') then
 return 'ok', 'File exists'
 else
 return 'crit', 'File does not exist'
 end
end

A 'useful' script 150

NSCAAgent.dll
This module periodically runs a set of check_commands and submits the results to an NSCA server.

Configuration

This page describes the configuration options for the NSCA module.

NSCA Agent Section

This is a wrapper page the actual data is on the following page NSCAAgent/config/NSCA_Agent

Ovreview
interval1.
nsca_host2.
nsca_port3.
encryption_method4.
password5.
hostname6.
debug_threads7.

1. 1. 1. 1.

Ovreview

Options to configure the NSCA module.

Option Default
value Description

interval 60 Time in seconds between each report back to the server (cant as of yet be set
individually so this is for all "checks")

nsca_host ... The NSCA/Nagios(?) server to report results to.
nsca_port 5667 The NSCA server port

encryption_method 1 Number corresponding to the various encryption algorithms (see below). Has
to be the same as the server or it wont work at all.

password The password to use. Again has to be the same as the server or it won't work
at all.

Advanced options:

Option Default value Description

hostname The host name of this host if set to blank (default) the windows name of
the computer will be used.

debug_threads 1 DEBUGNumber of threads to run, no reason to change this really (unless
you want to stress test something)

interval

Time in seconds between each report back to the server (cant as of yet be set individually so this is for all
"checks")

NSCAAgent.dll 151

Value
Any positive integer (time in seconds)

Default
60 (seconds)

nsca_host

The NSCA/Nagios(?) server to report results to.

Values
Hostname or IP address to submit back results to.

Default
Empty string (will in 3.7 and above mean don't submit results)

nsca_port

The NSCA server port

Values
Any positive integer (port number ought to be less then 65534)

Default
5667

encryption_method

Number corresponding to the various encryption algorithms (see below). Has to be the same as the server or it
wont work at all.

Values

Supported encryption methods:

Algorithm
0 None (Do NOT use this option)
1 Simple XOR (No security, just obfuscation, but very fast)
2 DES
3 3DES (Triple DES)
4 CAST-128
6 xTEA
8 BLOWFISH
9 TWOFISH
11 RC2
14 RIJNDAEL-128 (AES)
20 SERPENT

Default
1 (I am note sure I thought default was 14?)

NSCA Agent Section 152

password

The password to use. Again has to be the same as the server or it won't work at all.

Values
Any string (should be the same as the one configured in nsca.conf

hostname

The host name of this host if set to blank (default) the windows name of the computer will be used.

Values
Any string (or auto)

Default
auto (means windows hostname will be used)

debug_threads

DEBUGNumber of threads to run, no reason to change this really (unless you want to stress test something)

Values
Any positive integer larger then or equal to 1

Default
1

NSCA Commands Section

This is a wrapper page the actual data is on the following page NSCAAgent/config/NSCA_Commands

Overview1. 1. 1. 1.

Overview

A list of commands to run and submit each time we report back to the NSCA server. A command starting with
host_ will be submitted as a host command. For an example see below: This will report back one service
check (called my_cpu_check) and one host check (host checks have no service name).

[NSCA Commands]
my_cpu_check=checkCPU warn=80 crit=90 time=20m time=10s time=4
host_check=check_ok

NSCA Agent Section 153

Configuration for the NSCAAgent
This page describes the configuration options for the NSCA module.

NSCA Agent Section

This is a wrapper page the actual data is on the following page NSCAAgent/config/NSCA_Agent

Ovreview
interval1.
nsca_host2.
nsca_port3.
encryption_method4.
password5.
hostname6.
debug_threads7.

1. 1. 1. 1.

Ovreview

Options to configure the NSCA module.

Option Default
value Description

interval 60 Time in seconds between each report back to the server (cant as of yet be set
individually so this is for all "checks")

nsca_host ... The NSCA/Nagios(?) server to report results to.
nsca_port 5667 The NSCA server port

encryption_method 1 Number corresponding to the various encryption algorithms (see below). Has
to be the same as the server or it wont work at all.

password The password to use. Again has to be the same as the server or it won't work
at all.

Advanced options:

Option Default value Description

hostname The host name of this host if set to blank (default) the windows name of
the computer will be used.

debug_threads 1 DEBUGNumber of threads to run, no reason to change this really (unless
you want to stress test something)

interval

Time in seconds between each report back to the server (cant as of yet be set individually so this is for all
"checks")

Value
Any positive integer (time in seconds)

Default
60 (seconds)

Configuration for the NSCAAgent 154

nsca_host

The NSCA/Nagios(?) server to report results to.

Values
Hostname or IP address to submit back results to.

Default
Empty string (will in 3.7 and above mean don't submit results)

nsca_port

The NSCA server port

Values
Any positive integer (port number ought to be less then 65534)

Default
5667

encryption_method

Number corresponding to the various encryption algorithms (see below). Has to be the same as the server or it
wont work at all.

Values

Supported encryption methods:

Algorithm
0 None (Do NOT use this option)
1 Simple XOR (No security, just obfuscation, but very fast)
2 DES
3 3DES (Triple DES)
4 CAST-128
6 xTEA
8 BLOWFISH
9 TWOFISH
11 RC2
14 RIJNDAEL-128 (AES)
20 SERPENT

Default
1 (I am note sure I thought default was 14?)

password

The password to use. Again has to be the same as the server or it won't work at all.

Values
Any string (should be the same as the one configured in nsca.conf

Ovreview 155

hostname

The host name of this host if set to blank (default) the windows name of the computer will be used.

Values
Any string (or auto)

Default
auto (means windows hostname will be used)

debug_threads

DEBUGNumber of threads to run, no reason to change this really (unless you want to stress test something)

Values
Any positive integer larger then or equal to 1

Default
1

NSCA Commands Section

This is a wrapper page the actual data is on the following page NSCAAgent/config/NSCA_Commands

Overview1. 1. 1. 1.

Overview

A list of commands to run and submit each time we report back to the NSCA server. A command starting with
host_ will be submitted as a host command. For an example see below: This will report back one service
check (called my_cpu_check) and one host check (host checks have no service name).

[NSCA Commands]
my_cpu_check=checkCPU warn=80 crit=90 time=20m time=10s time=4
host_check=check_ok

Ovreview 156

	Table of Contents
	About NSClient++
	Supported OS/Platform
	Whats in a name?
	Become a sponsor
	Current sponsors
	OP5
	Opsview

	Fans of NSClient++
	Installing NSClient++
	1. Installation
	2. Configuration
	3. System tray
	4. Testing and Debugging
	5. Windows Firewall
	6. External Firewall (optional)

	Installing NSClient++
	1. Installation
	2. Configuration
	3. System tray
	4. Testing and Debugging
	5. Windows Firewall
	6. External Firewall (optional)

	Installation
	Firewall
	NT4
	System Tray Installation Guide
	SERVICE_INTERACTIVE_PROCESS 'way'
	Client-server 'way'
	Installation guide
	NT4, 2000, XP (old)
	XP, 2k3, Vista, Windows 7, etc (modern)

	Dependencies for Windows NT4
	PDH library (CPU, memory, etc etc)
	PSAPI (process checks)

	Configuration
	Modules
	Settings
	includes

	Module Configuration
	NRPE Listener Sections
	NRPE Section
	NRPE Handlers Section

	File Logging Sections
	Log Section

	NSClient Sections
	NSClient Section

	Check System Sections
	CheckSystem Section

	External Script Sections
	External Script Section
	External Scripts Section
	External Alias Section

	Event Log Sections
	Event Log Section
	EventLog?

	NSCA Agent Sections
	NSCA Agent Section
	NSCA Commands Section

	LUA Scripts

	Problems
	1. I am having problems where do I start?
	2. Failed to open performance counters
	3. Bind failed
	4. "EvenlogBuffer?? is too small
	5. How do I properly escape spaces in strings
	6. How do I properly escape $ in strings
	7. System Tray does not work
	Older WIndows
	"modern" windows

	Modules
	CheckDisk
	CheckEventLog
	CheckSystem
	CheckHelpers
	FileLogger
	NRPEListener
	NSClientListener
	SysTray
	CheckWMI
	CheckTaskSched
	CheckExternalScripts
	LUAScript
	NSCAAgent
	RemoteConfiguration

	All Commands
	CheckDisk.dll
	Configuration Sections

	Configuration for the CheckDisk
	Configuration Sections

	CheckFileSize
	Examples
	Check the size of the windows directory
	Check the size of the pagefile.sys
	Multiple files
	Single file
	Some exchange database thing

	CheckDriveSize
	Examples
	Check C:
	Volumes
	Volumes
	All fixed and network disks
	Fixed and Network (ignore some)
	Checking UNC Paths
	Simple Config

	CheckFile
	CheckFile2
	Syntax
	Order
	Filter modes
	Filter Types
	time expression
	string expression

	Filter in/out
	Some more Examples (for 0.3.8)

	CheckEventLog.dll
	Configuration Sections
	EventLog?

	Configuration for the CheckEventLog
	Configuration Sections
	EventLog?

	CheckEventLog
	Filter Keywords
	Operators
	Writing Filters
	Using Keywords
	id (event id)
	source (program generating the event)
	generated (when the event was generated)
	Written
	Severity
	Type
	Message
	Strings

	Examples

	CheckEventLog
	Syntax
	Order
	Filter modes
	Filter Types
	event type expression
	event severity expression
	time expression
	string expression

	Filter in/out
	Unique
	Examples
	Sample Eventlog Command
	Another sample
	Check if a script is running as it should

	Don't understand filtering ?
	Options
	Rules
	How it works
	Pseudo code (filter=new)

	CheckSystem.dll
	Command Line
	Configuration Sections
	CheckSystem Section

	Configuration for the CheckSystem
	CheckSystem Section
	Overview

	CheckCPU
	Configuration
	FAQ
	Examples
	Sample Command
	Multiple Time entry
	check_load

	CheckUpTime
	Examples

	CheckServiceState
	Configuration
	Examples
	Sample check
	Auto started
	Service name with spaces

	CheckProcState
	Examples
	Process running/not running
	Process running/not running
	Check number of processes running
	Substrings and commandline
	More process counts

	CheckMem
	Examples
	Page
	Physical
	Multiple

	CheckCounter
	FAQ
	Command line
	check_nt vs. check_nrpe
	Examples
	Sample Command
	Using Instances
	Microsoft Exchange 5.5 IS RPC Operations / Sec
	Windows 2000/2003 Physical Disk Time

	CheckHelpers.dll
	Configuration

	CheckAlwaysOK
	Examples

	CheckAlwaysCRITICAL
	Examples

	CheckAlwaysWARNING
	Examples

	CheckOK
	Examples

	CheckCRITICAL
	Examples

	CheckWARNING
	Examples

	CheckMultiple
	Examples

	CheckVersion
	Examples

	CheckTaskSched.dll
	Configuration

	CheckTaskSched
	Arguments:

	FileLogger.dll
	Configuration Sections
	Overview

	Configuration for the FileLogger
	Configuration Sections
	Overview

	NRPEListener.dll
	Configuration Sections
	NRPE Section
	NRPE Handler Section

	Configuration for the NRPEListener
	NRPE Section
	Overview

	NRPE Handler Section
	Ovreview

	NSClientListener.dll
	Configuration Sections
	NSClient Section

	Examples

	Configuration for the NSClientListener
	NSClient Section
	Ovreview

	SysTray.dll
	CheckWMI.dll
	Configuration

	CheckWMI
	Filters
	Filter <Mode>s
	Filter <Type>s
	Filter <Columns>s
	string expression
	columnSyntax
	Examples
	A sample query
	Using Query Alias
	Overriding Query Alias
	Checking With filters
	Debbuging queries

	CheckWMIValue
	Examples
	CHeck Threads in a process
	Ping status
	Using from command line

	CheckExternalScripts.dll
	Configuration for the CheckExternalScripts
	External Script
	External Scripts
	External Alias

	Examples
	Check Users Logged In

	Configuration for the CheckExternalScripts
	External Script
	Overview

	External Scripts
	Overview

	External Alias
	Overview

	LUAScript.dll
	Configuration
	[LUA Scripts]

	Debugging Lua
	A simple script
	Structure of a script
	A 'useful' script
	NSCAAgent.dll
	Configuration
	NSCA Agent Section
	NSCA Commands Section

	Configuration for the NSCAAgent
	NSCA Agent Section
	Ovreview

	NSCA Commands Section
	Overview

